Bacterial infections or their biofilms in diabetic foot ulcer (DFU) are a key cause of drug-resistant wounds and amputations. Cold atmospheric plasma (CAP) is well documented for its antibacterial effect and promoting wound healing. In the current study, we built an argon-based, custom CAP device and investigated its potential in eliminating laboratory and clinical bacterial strains derived from DFU.
View Article and Find Full Text PDFLeukemogenesis is a complex process that involves multiple stages of mutation in either hematopoietic stem or progenitor cells, leading to cancer development over time. Acute myeloid leukemia (AML) is an aggressive malignancy that affects myeloid cells. The major disease burden is caused by immature blast cells, which are eliminated using conventional chemotherapies.
View Article and Find Full Text PDFBackground: Exposure to environmental tobacco smoke (ETS) is arguably the most ubiquitous and hazardous, even at very low levels, starting in early life. The objective of this study was to describe the state of research and future trends on ETS exposure and Children's Health (CH) topics with bibliometrics and altmetrics.
Methods: An electronic search was performed in Scopus database on January 31, 2023.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative condition, triggered by various factors causing the degeneration of upper and lower motor neurons, resulting in progressive muscle wasting, paralysis, and death. Multiple in vivo and in vitro models have been established to unravel the molecular events leading to the deterioration of motor neurons in ALS. The canonical and non-canonical Wnt signaling pathway has been implicated to play a crucial role in the progression of neurodegenerative disorders.
View Article and Find Full Text PDFOvarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma.
View Article and Find Full Text PDFOxidation-reduction reactions played a significant role in the chemical evolution of life forms on oxygenated earth. Cellular respiration is dependent on such redox reactions, and any imbalance leads to the accumulation of reactive oxygen species (ROS), resulting in both chronic and acute illnesses. According to the International Agency for Research on Cancer (IARC), by 2040, the global burden of new cancer cases is expected to be around 27.
View Article and Find Full Text PDFBackground: Recent studies have emphasised the important role of amino acids in cancer metabolism. Cold physical plasma is an evolving technology employed to target tumour cells by introducing reactive oxygen species (ROS). However, limited understanding is available on the role of metabolic reprogramming in tumour cells fostering or reducing plasma-induced cancer cell death.
View Article and Find Full Text PDFCutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process.
View Article and Find Full Text PDFDespite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues.
View Article and Find Full Text PDFCold physical plasma is a partially ionized gas investigated as a new anticancer tool in selectively targeting cancer cells in monotherapy or in combination with therapeutic agents. Here, we investigated the intrinsic resistance mechanisms of tumor cells towards physical plasma treatment. When analyzing the dose-response relationship to cold plasma-derived oxidants in 11 human cancer cell lines, we identified four 'resistant' and seven 'sensitive' cell lines.
View Article and Find Full Text PDFMalignant melanoma is an aggressive cancer that develops drug resistance leading to poor prognosis. Efficient delivery of chemotherapeutic drugs to the tumor tissue remains a major challenge in treatment regimens. Using murine (B16) and human (SK-MEL-28) melanoma cells, we investigated traditional cytotoxic agents in combination with cold physical plasma-derived oxidants.
View Article and Find Full Text PDFIncreasing numbers of cancer deaths worldwide demand for new treatment avenues. Cold physical plasma is a partially ionized gas expelling a variety of reactive oxygen and nitrogen species, which can be harnesses therapeutically. Plasmas and plasma-treated liquids have antitumor properties in vitro and in vivo.
View Article and Find Full Text PDFDespite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies.
View Article and Find Full Text PDFMetastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity.
View Article and Find Full Text PDFPodocytes are terminally differentiated cells of the kidney filtration barrier. They are subjected to physiological filtration pressure and considerable mechanical strain, which can be further increased in various kidney diseases. When injury causes cytoskeletal reorganization and morphological alterations of these cells, the filtration barrier may become compromised and allow proteins to leak into the urine (a condition called proteinuria).
View Article and Find Full Text PDFTranscriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) are critical transcriptional co-activators downstream of the Hippo pathway involved in the regulation of organ size, tissue regeneration, proliferation, and apoptosis. Recent studies suggested common and distinct functions of TAZ and YAP and their diverse impact under several pathological conditions. Here we report differential regulation of TAZ and YAP in response to oxidative stress.
View Article and Find Full Text PDFPlasma homocysteine (Hcy) levels are positively correlated with cardiovascular mortality in diabetes. However, the joint effect of hyperhomocysteinemia (HHcy) and hyperglycemia (HG) on endothelial dysfunction (ED) and the underlying mechanisms have not been studied. Mild (22 µmol/L) and moderate (88 µmol/L) HHcy were induced in cystathionine β-synthase wild-type (Cbs(+/+)) and heterozygous-deficient (Cbs(-/+)) mice by a high-methionine (HM) diet.
View Article and Find Full Text PDFResting mitochondrial matrix Ca(2+) is maintained through a mitochondrial calcium uptake 1 (MICU1)-established threshold inhibition of mitochondrial calcium uniporter (MCU) activity. It is not known how MICU1 interacts with MCU to establish this Ca(2+) threshold for mitochondrial Ca(2+) uptake and MCU activity. Here, we show that MICU1 localizes to the mitochondrial matrix side of the inner mitochondrial membrane and MICU1/MCU binding is determined by a MICU1 N-terminal polybasic domain and two interacting coiled-coil domains of MCU.
View Article and Find Full Text PDFDuring sepsis, acute lung injury (ALI) results from activation of innate immune cells and endothelial cells by endotoxins, leading to systemic inflammation through proinflammatory cytokine overproduction, oxidative stress, and intracellular Ca2+ overload. Despite considerable investigation, the underlying molecular mechanism(s) leading to LPS-induced ALI remain elusive. To determine whether stromal interaction molecule 1-dependent (STIM1-dependent) signaling drives endothelial dysfunction in response to LPS, we investigated oxidative and STIM1 signaling of EC-specific Stim1-knockout mice.
View Article and Find Full Text PDFIntracellular calcium overload plays a critical role in numerous pathological syndromes such as heart failure, brain ischemia, and stroke. Hyperactivation of the acid-sensing ion channels including degenerin/epithelial amiloride-sensitive sodium (DEG/ENaC) channels has been shown to elevate intracellular calcium and cause subsequent neuronal cell death that is independent of the canonical Egl-1/Ced-9/Ced-4/Ced-3 apoptotic pathway in Caenorhabditis elegans. In mammalian cells, hyperactivation of the DEG/ENaC channels can also lead to cell death, although the underlying mechanism remains largely unknown.
View Article and Find Full Text PDFThe Ca(2+)-sensing stromal interaction molecule (STIM) proteins are crucial Ca(2+) signal coordinators. Cre-lox technology was used to generate smooth muscle (sm)-targeted STIM1-, STIM2-, and double STIM1/STIM2-knockout (KO) mouse models, which reveal the essential role of STIM proteins in Ca(2+) homeostasis and their crucial role in controlling function, growth, and development of smooth muscle cells (SMCs). Compared to Cre(+/-) littermates, sm-STIM1-KO mice showed high mortality (50% by 30 d) and reduced bodyweight.
View Article and Find Full Text PDFMitochondrial Ca(2+) (Ca(2+)(m)) uptake is mediated by an inner membrane Ca(2+) channel called the uniporter. Ca(2+) uptake is driven by the considerable voltage present across the inner membrane (ΔΨ(m)) generated by proton pumping by the respiratory chain. Mitochondrial matrix Ca(2+) concentration is maintained five to six orders of magnitude lower than its equilibrium level, but the molecular mechanisms for how this is achieved are not clear.
View Article and Find Full Text PDFOxidative stress has been implicated in a number of pathologic conditions including ischemia/reperfusion damage and sepsis. The concept of oxidative stress refers to the aberrant formation of ROS (reactive oxygen species), which include O(2)(•-), H(2)O(2), and hydroxyl radicals. Reactive oxygen species influences a multitude of cellular processes including signal transduction, cell proliferation and cell death.
View Article and Find Full Text PDFNecroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) cells feature a pronounced apoptotic resistance. The vascular endothelial growth factor (VEGF) possesses a role in this apoptotic block, although underlying functional mechanisms and the involvement of the microenvironment are unclear. In this study, the VEGF status in CLL was assessed by enzyme-linked immunosorbent assay and immunofluorescence.
View Article and Find Full Text PDF