AMP-activated protein kinase (AMPK) is a protein kinase that plays versatile roles in response to a variety of physiological stresses, including glucose deprivation, hypoxia, and ischemia. As a kinase with pleiotropic functions, it plays a complex role in tumor progression, exhibiting both tumor-promoting and tumor-suppressing activities. On one hand, AMPK enhances cancer cell proliferation and survival, promotes cancer metastasis, and impairs anti-tumor immunity.
View Article and Find Full Text PDFOncogene Moesin plays critical role in initiation, progression, and metastasis of multiple cancers. It exerts oncogenic activity due to its high-level expression as well as posttranslational modification in cancer. However, factors responsible for its high-level expression remain elusive.
View Article and Find Full Text PDFGlucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation.
View Article and Find Full Text PDFActivating the macrophage NLRP3 inflammasome can promote excessive inflammation with severe cell and tissue damage and organ dysfunction. Here, we show that pharmacological or genetic inhibition of pyruvate dehydrogenase kinase (PDHK) significantly attenuates NLRP3 inflammasome activation in murine and human macrophages and septic mice by lowering caspase-1 cleavage and interleukin-1β (IL-1β) secretion. Inhibiting PDHK reverses NLRP3 inflammasome-induced metabolic reprogramming, enhances autophagy, promotes mitochondrial fusion over fission, preserves crista ultrastructure, and attenuates mitochondrial reactive oxygen species (ROS) production.
View Article and Find Full Text PDFHere, we present optimized approaches to identify the efficiency of cancer cell phagocytosis by macrophages in vitro and in vivo. We describe the preparation and co-culture of macrophages and cancer cells, followed by in vitro phagocytosis assay using flow cytometry and confocal microscopy, respectively. We then detail the establishment of xenograft tumor mouse model and the in vivo detecting of phagocytosis efficiency by flow cytometry and qRT-PCR.
View Article and Find Full Text PDFMetabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting.
View Article and Find Full Text PDFGrowth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation.
View Article and Find Full Text PDFArsenic trioxide (ATO), a potent anti-neoplastic drug, is known to prevent cancer cell growth through induction of autophagic cell death. However, importance of cellular factors in ATO-mediated autophagic cell death is poorly understood. In this study, using biochemical and immunofluorescence techniques, we show that F-box protein FBXO41 plays a critical role in anti-proliferative activity of ATO.
View Article and Find Full Text PDFCancer stem-like cells (CSLCs) acquire enhanced immune checkpoint responses to evade immune cell killing and promote tumor progression. Here we showed that signal regulatory protein γ (SIRPγ) determined CSLC properties and immune evasiveness in a small population of lung adenocarcinoma (LUAD) cancer cells. A SIRPγhi population displayed CSLC properties and transmitted the immune escape signal through sustaining CD47 expression in both SIRPγhi and SIRPγlo/- tumor cells.
View Article and Find Full Text PDFApoptosis is a programmed cell death that efficiently removes damaged cells to maintain tissue homeostasis. Defect in apoptotic machinery can lead to tumor development, progression, and resistance to chemotherapy. PUMA (p53 upregulated modulator of apoptosis) and BAX (BCL2-associated X protein) are among the most well-known inducers of apoptosis.
View Article and Find Full Text PDFMitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission.
View Article and Find Full Text PDFCombretastatin A4 and its analogs are undergoing various clinical trials for the treatment of different cancers. This study illustrated the molecular mechanism and antitumor activity of C12, (5-Quinolin-3-yl and 4-(3,4,5-trimethoxyphenyl) substituted imidazol-2-amine), a synthetic analog of CA-4. C12 reduced the tumor volume of MCF-7 xenograft in NOD-SCID mice without affecting the bodyweight of the mice.
View Article and Find Full Text PDFAberrant activation of β-catenin has been implicated in a variety of human diseases, including cancer. In spite of significant progress, the regulation of active Wnt/β-catenin-signaling pathways is still poorly understood. In this study, we show that F-box protein 16 (FBXO16) is a putative tumor suppressor.
View Article and Find Full Text PDFThe transformation of a normal cell to cancer requires the derail of multiple pathways. Normal signaling in a cell is regulated at multiple stages by the presence of feedback loops, calibration of levels of proteins by their regulated turnover, and posttranscriptional regulation, to name a few. The tumor suppressor protein FBXO31 is a component of the SCF E3 ubiquitin ligase and is required to arrest cells at G1 following genotoxic stresses.
View Article and Find Full Text PDFMononuclear [(p-cym)RuCl(pz4lut)]Cl (1) and dinuclear [{(p-cym)RuCl}2(μ-pz4lut)]Cl2 (2) complexes (p-cym = 1-isopropyl-4-methylbenzene) comprising of bis(pyrazol-1-yl)methane based heteroscorpionate ligand α,α,α′,α′-tetra(pyrazol-1-yl)-2,6-lutidine (pz4lut) have been synthesised from pz4lut ligand and dimeric precursor complex [(p-cym)RuCl(μ-Cl)]2 in methanol. The aqua derivatives [(p-cym)Ru(H2O)(pz4lut)](ClO4)2 (3) and [{(p-cym)Ru(H2O)}2(μ-pz4lut)](ClO4)4 (4) are obtained from 1 and 2, respectively, via Cl/H2O exchange process in presence of appropriate equivalents of AgClO4 in methanol–water mixture. The molecular structures of dinuclear complexes, 2 and 4 are authenticated by their single crystal X-ray structures.
View Article and Find Full Text PDF