Publications by authors named "Rajesh K Kainthan"

Multifunctional biocompatible and biodegradable nanomaterials incorporating specific degradable linkages that respond to various stimuli and with defined degradation profiles are critical to the advancement of targeted nanomedicine. Herein we report, for the first time, a new class of multifunctional dendritic polyether polyketals containing different ketal linkages in their backbone that exhibit unprecedented control over degradation in solution and within the cells. High-molecular-weight and highly compact poly(ketal hydroxyethers) (PKHEs) were synthesized from newly designed α-epoxy-ω-hydroxyl-functionalized AB(2)-type ketal monomers carrying structurally different ketal groups (both cyclic and acyclic) with good control over polymer properties by anionic ring-opening multibranching polymerization.

View Article and Find Full Text PDF

Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the 'PC-inverse' choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membranes and to PC-containing liposomes, the binding strength depending on the number density of CP groups per macromolecule. We also show that HPG-CPs can cause cells to adhere with varying affinity to other cells, and that binding can be reversed by subsequent exposure to low molecular weight HPGs carrying small numbers of PCs.

View Article and Find Full Text PDF

Purpose: Currently, in vivo or in vitro(99m)Tc-radiolabelled red blood cells are the standard blood pool imaging agents. Due to risks associated with handling of blood and the problems with the current (99m)Tc shortage, we were interested in a long-circulating biocompatible synthetic macromolecule that would be simple to prepare and could also be used for PET imaging.

Methods: A high molecular weight hyperbranched polyglycerol (HPG) of 500 kDa was derivatized to coordinate radioactive gallium and to establish its labelling efficiency, stability and pharmacokinetics.

View Article and Find Full Text PDF

L-, P-, and E-Selectin are cell adhesion molecules that play a crucial role in leukocyte recruitment from the blood stream to the afflicted tissue in an acute and chronic inflammatory setting. Since selectins mediate the initial contact of leukocytes to the vascular endothelium, they have evolved as a valuable therapeutic target in diseases related to inflammation by inhibition of the physiological selectin-ligand interactions. In a previous study, it was demonstrated that dPGS, a fully synthetic heparin analogue, works as an efficient inhibitor towards L- and P-selectin in vitro as well as in vivo.

View Article and Find Full Text PDF

To study the mechanism of cellular internalization, hyperbranched polyether derivatives consisting of amino-bearing hyperbranched polyglycerols (HPGs) of varied molecular mass and size range are designed and synthesized. HPGs were further fluorescently labelled by conjugating maleimido indocarbocyanine dye (ICC-mal). The conjugates are characterized by UV-vis spectroscopy, fluorescence profile, zeta potential, and dynamic light scattering.

View Article and Find Full Text PDF

Effective proteome-wide strategies that distinguish the N-termini of proteins from the N-termini of their protease cleavage products would accelerate identification of the substrates of proteases with broad or unknown specificity. Our approach, named terminal amine isotopic labeling of substrates (TAILS), addresses this challenge by using dendritic polyglycerol aldehyde polymers that remove tryptic and C-terminal peptides. We analyze unbound naturally acetylated, cyclized or labeled N-termini from proteins and their protease cleavage products by tandem mass spectrometry, and use peptide isotope quantification to discriminate between the substrates of the protease of interest and the products of background proteolysis.

View Article and Find Full Text PDF

The covalent attachment of hydrophilic polymers or biopharmaceuticals to the surface of red blood cells (RBCs) has previously been shown as a relatively compatible and effective method for a range of applications. Here, the first example of cell-surface grafting with a hyperbranched and multi-functional macromolecule is described. A range (3 kDa-101 kDa) of dense, globular, and blood compatible hyperbranched polyglycerols (HPG) were synthesized and functionalized with cell-surface reactive, succinimidyl succinate groups (1-12 groups per polymer).

View Article and Find Full Text PDF

Three hydrolytically stable polyethyleneglycol (PEG)-based N-substituted acrylamide macromonomers, methoxypolyethyleneglycol (350) acrylamide (MPEG350Am) methoxypolyethyleneglycol (750) acrylamide(MPEG750Am) and methoxypolyethyleneglycol (2000)acrylamide (MPEG2000Am) with increasing PEG chain length were synthesized. Surface-initiated aqueous atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10-hexamethyl triethylene tetramine (HMTETA) catalyst was utilized to generate dense polymer brushes from these monomers via an ester linker group on the surface of model polystyrene (PS) particles. The molecular weight, hydrodynamic thickness, and graft densities of the grafted polymer layers were controlled by changing the reaction parameters of monomer concentration, addition of Cu(II)Cl2, and sodium chloride.

View Article and Find Full Text PDF

Objective: To develop paclitaxel incorporated into unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols (dHPGs) for use as mucoadhesive intravesical agents against non-muscle-invasive bladder cancer.

Materials And Methods: Two different types of dHPGs (HPG- C10-polyethylene glycol (PEG) and polyethyleneimine (PEI)-C18-HPG) were synthesized and paclitaxel was loaded into these using a solvent evaporation method. After physicochemical characterization of the resulting nanoparticles, four human bladder cancer cell lines were incubated with various concentrations of paclitaxel incorporated in dHPGs and the results were compared with those of paclitaxel formulated in Cremophor-EL (Taxol(R), Bristol-Myers-Squibb).

View Article and Find Full Text PDF

We recently reported the synthesis and testing of a new class of unimolecular micelles based on hyperbranched polyglycerols as second generation synthetic plasma expanders and as general drug delivery vehicles. A detailed biodistribution study of two derivatized hyperbranched polyglycerols of different molecular weights derivatized with hydrophobic groups and short poly(ethylene glycol) chains is reported in this article. In mice, these materials are nontoxic with circulation half-lives as high as 31 h, controllable by manipulating the molecular weight and the degree of PEG derivatization.

View Article and Find Full Text PDF

Monothiol-terminated hyperbranched polyglycerols (HPGs) were synthesized by ring-opening polymerization of glycidol from partially deprotonated 2,2'-dihydroxyethane disulfide as the initiator and subsequent reduction of the disulfide group. Two molecular weights of HPG thiols were synthesized. The molecular weights of the polymers were determined by MALDI-TOF analysis, and the presence of thiol was verified by Ellman's assay.

View Article and Find Full Text PDF

This paper discusses the binding and release properties of hydrophobically modified hyperbranched polyglycerol-polyethylene glycol copolymers that were originally developed as human serum albumin (HSA) substitutes. Their unimolecular micellar nature in aqueous solution has been proven by size measurements and other spectroscopic methods. These polymers aggregate weakly in solution, but the aggregates are broken down by low shear forces or by encapsulating a hydrophobic ligand within the polymer.

View Article and Find Full Text PDF

There is a huge clinical demand for Human Serum Albumin (HSA), with a world market of approximately $1.5B/year. Concern over prion and viral transmission in the blood supply has led to a need for safer substitutes and offers the opportunity for development of materials with enhanced properties over the presently available plasma expanders.

View Article and Find Full Text PDF

Hyperbranched polyglycerols (HPGs) are water-soluble polyether polyols that can be synthesized in a controlled manner with low polydispersity. Recently we reported the synthesis and characterization of very high molecular weight and narrowly polydispersed HPGs that could be used as potential alternatives to high generation dendrimers, their advantage being the relative simplicity of synthesis. Reported in this article are the pharmacokinetic properties of these polymers.

View Article and Find Full Text PDF

Low molecular weight hyperbranched polyglycerols are highly water soluble and biocompatible polyether polyols, which can be synthesized in a controlled manner with narrow polydispersity. Recently we reported the synthesis and characterization of very high molecular weight (Mn up to 700,000) and narrowly polydispersed polyglycerols which could be potentially used as alternatives to high generation dendrimers which are difficult to make. A detailed biocompatibility testing of these polymers conducted in vitro is reported here.

View Article and Find Full Text PDF

A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG) are synthesized by multibranching anionic ring opening polymerization. Multivalent cationic sites are added to these polymers by a post-amination and quarternization reactions. Blood compatibility studies using these polymers at different concentrations showed insignificant effects on complement activation, platelet activation, coagulation, erythrocyte aggregation and hemolysis compared to branched cationic polyethyleneimine (PEI).

View Article and Find Full Text PDF

Recent advances in understanding biological systems have proven that RNA is not merely the carrier of genetic information, but also a key molecule in regulation of gene expression and other crucial metabolic processes. Therefore, it is being considered as an ideal therapeutic candidate both for metabolic and genetic disorders. However, research involving RNA molecules faces a practical limitation since RNA is highly labile.

View Article and Find Full Text PDF

Polyglycidols are flexible hydrophilic polyethers that are potentially biocompatible polymers based on their similarities to the well-studied poly(ethyleneglycol). Polyglycidols can be prepared as branched or linear polymers by suitable synthetic methods. Biocompatibility testing of these polymers conducted in vitro as well as in vivo are reported here.

View Article and Find Full Text PDF