Publications by authors named "Rajesh Ganapathy"

Many critical biological processes, like wound healing, require densely packed cell monolayers/tissues to transition from a jammed solid-like to a fluid-like state. Although numerical studies anticipate changes in the cell shape alone can lead to unjamming, experimental support for this prediction is not definitive because, in living systems, fluidization due to density changes cannot be ruled out. Additionally, a cell's ability to modulate its motility only compounds difficulties since even in assemblies of rigid active particles, changing the nature of self-propulsion has non-trivial effects on the dynamics.

View Article and Find Full Text PDF

Typically, the rate at which a heat engine can produce useful work is constrained by the buildup of irreversibility with increasing operating speed. Here, using a recently developed reservoir engineering technique, we designed and quantified the performance of a colloidal Stirling engine operating in a viscoelastic bath. While the bath acts like a viscous fluid in the quasistatic limit, and the engine's performance agrees with equilibrium predictions, on reducing the cycle time to the bath's structural relaxation time, the increasingly elastic response of the bath aids suppress the buildup of irreversibility.

View Article and Find Full Text PDF

All real heat engines, be it conventional macro engines or colloidal and atomic micro engines, inevitably tradeoff efficiency in their pursuit to maximize power. This basic postulate of finite-time thermodynamics has been the bane of all engine design for over two centuries and all optimal protocols implemented hitherto could at best minimize only the loss in the efficiency. The absence of a protocol that allows engines to overcome this limitation has prompted theoretical studies to suggest universality of the postulate in both passive and active engines.

View Article and Find Full Text PDF

The conventional wisdom is that liquids are completely disordered and lack nontrivial structure beyond nearest-neighbor distances. Recent observations have upended this view and demonstrated that the microstructure in liquids is surprisingly rich and plays a critical role in numerous physical, biological, and industrial processes. However, approaches to uncover this structure are either system-specific or yield results that are not physically intuitive.

View Article and Find Full Text PDF

Extending atomic epitaxy concepts to colloidal systems for realizing functional surface structures has recently piqued scientific interest. Akin to the growth of ordered metal clusters on graphene moiré, spatially ordered colloidal crystals have been realized on soft lithographically fabricated moiré patterns. In addition to moiré periodicity, lattice misfit strain can bring about a further level of hierarchy in colloidal self-assembly, although its role in self-organization remains unexplored.

View Article and Find Full Text PDF

Colloidal heat engines are model systems to analyze mechanisms of transduction of heat to work at the mesoscale. While engines developed hitherto were realized using conservative potentials and operated in isolation, biological micromotors - their real counterparts - seldom perform under such simplifications. Here, we examine thermodynamics beyond such idealizations by constructing a pair of engines from two colloidal microspheres in optical traps at close separation.

View Article and Find Full Text PDF

Surface strain can alter the dynamics of adsorbates, and often, the adsorbates themselves induce and interact via their surface strain fields. In epitaxy, such strain-mediated effects get further compounded when a misfit strain exists due to lattice mismatch between the growing film and substrate. Here, we carry out particle-resolved imaging of heteroepitaxial growth of multilayer colloidal films where the particles interact via a short-range attraction.

View Article and Find Full Text PDF

Melting in two-dimensional flat space is typically two-step and via the hexatic phase. How melting proceeds on a curved surface, however, is not known. Topology mandates that crystalline particle assemblies on these surfaces harbor a finite density of defects, which itself can be ordered, like the icosahedral ordering of 5-coordinated disclination defects on a sphere.

View Article and Find Full Text PDF

Despite decades of intense research, whether the transformation of supercooled liquids into glass is a kinetic phenomenon or a thermodynamic phase transition remains unknown. Here, we analyzed optical microscopy experiments on 2D binary colloidal glass-forming liquids and investigated the structural links of a prominent kinetic theory of glass transition. We examined a possible structural origin for localized excitations, which are building blocks of the dynamical facilitation theory-a purely kinetic approach for the glass transition.

View Article and Find Full Text PDF

Recent numerical studies have identified the persistence time of active motion as a critical parameter governing glassy dynamics in dense active matter. Here we studied dynamics in liquids of granular active ellipsoids with tunable persistence and velocity. We show that increasing the persistence time at moderate supercooling is equivalent to increasing the strength of attraction in equilibrium liquids and results in reentrant dynamics not just in the translational degrees of freedom, as anticipated, but also in the orientational ones.

View Article and Find Full Text PDF

Colloidal heat engines are paradigmatic models to understand the conversion of heat into work in a noisy environment - a domain where biological and synthetic nano/micro machines function. While the operation of these engines across thermal baths is well-understood, how they function across baths with noise statistics that is non-Gaussian and also lacks memory, the simplest departure from the thermal case, remains unclear. Here we quantified the performance of a colloidal Stirling engine operating between an engineered memoryless non-Gaussian bath and a Gaussian one.

View Article and Find Full Text PDF

In many active matter systems, particle trajectories have a well-defined handedness or chirality. Whether such chiral activity can introduce stereoselective interactions between particles is not known. Here, we developed a strategy to tune the nature of chiral activity of three-dimensionally printed granular ellipsoids without altering their shape or size.

View Article and Find Full Text PDF

The structure and dynamics of liquids on curved surfaces are often studied through the lens of frustration-based approaches to the glass transition. Competing glass transition theories, however, remain largely untested on such surfaces and moreover, studies hitherto have been entirely theoretical/numerical. Here we carry out single particle-resolved imaging of dynamics of bi-disperse colloidal liquids confined to the surface of a sphere.

View Article and Find Full Text PDF

Rheology of dense anisotropic colloidal suspensions often exhibits unsteady flow at constant imposed shear stress and/or shear rate. Using simultaneous high-resolution confocal microscopy and rheology, we find that the temporal behavior arises due to a strong coupling between shear flow and particle orientation. At smaller applied stresses, the orientation of rods fluctuates around the flow direction.

View Article and Find Full Text PDF

Strain-relief pattern formation in heteroepitaxy is well understood for particles with long-range attraction and is a routinely exploited organizational principle for atoms and molecules. However, for particles with short-range attraction such as colloids and nanoparticles, which form brittle assemblies, the mechanism(s) of strain-relief is not known. Here, we found that for colloids with short-range attraction, monolayer films on substrates with square symmetry could accommodate large compressive misfit strains through locally dewetted hexagonally ordered stripes.

View Article and Find Full Text PDF

In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response.

View Article and Find Full Text PDF

We show experimentally that both single and multiple mechanical memories can be encoded in an amorphous bubble raft, a prototypical soft glass, subject to an oscillatory strain. In line with recent numerical results, we find that multiple memories can be formed sans external noise. By systematically investigating memory formation for a range of training strain amplitudes spanning yield, we find clear signatures of memory even beyond yielding.

View Article and Find Full Text PDF

There is mounting evidence indicating that relaxation dynamics in liquids approaching their glass transition not only become increasingly cooperative, but the relaxing regions also become more compact in shape. Of the many theories of the glass transition, only the random first-order theory-a thermodynamic framework-anticipates the surface tension of relaxing regions to play a role in deciding both their size and morphology. However, owing to the amorphous nature of the relaxing regions, even the identification of their interfaces has not been possible in experiments hitherto.

View Article and Find Full Text PDF

The monomer surface mobility is the single most important parameter that decides the nucleation density and morphology of islands during thin-film growth. During template-assisted surface growth in particular, low surface mobilities can prevent monomers from reaching target sites and this results in a partial to complete loss of nucleation control. Whereas in atomic systems a broad range of surface mobilities can be readily accessed, for colloids, owing to their large size, this window is substantially narrow and therefore imposes severe restrictions in extending template-assisted growth techniques to steer their self-assembly.

View Article and Find Full Text PDF

We develop a scheme based on a real space microscopic analysis of particle dynamics to ascertain the relevance of dynamical facilitation as a mechanism of structural relaxation in glass-forming liquids. By analyzing the spatial organization of localized excitations within clusters of mobile particles in a colloidal glass former and examining their partitioning into shell-like and corelike regions, we establish the existence of a crossover from a facilitation-dominated regime at low area fractions to a collective activated hopping-dominated one close to the glass transition. This crossover occurs in the vicinity of the area fraction at which the peak of the mobility transfer function exhibits a maximum and the morphology of cooperatively rearranging regions changes from stringlike to a compact form.

View Article and Find Full Text PDF

We examine the influence of the shape of dynamical heterogeneities on the Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in quasi-two-dimensional suspensions of colloidal ellipsoids. For ellipsoids with repulsive interactions, both SE and SED relations are violated at all area fractions. On approaching the glass transition, however, the extent to which this violation occurs changes beyond a crossover area fraction.

View Article and Find Full Text PDF

One of the greatest challenges in contemporary condensed matter physics is to ascertain whether the formation of glasses from liquids is fundamentally thermodynamic or dynamic in origin. Although the thermodynamic paradigm has dominated theoretical research for decades, the purely kinetic perspective of the dynamical facilitation (DF) theory has attained prominence in recent times. In particular, recent experiments and simulations have highlighted the importance of facilitation using simple model systems composed of spherical particles.

View Article and Find Full Text PDF

Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. Although observations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the Dynamical Facilitation (DF) theory lacks experimental support. Further, for vitrification induced by randomly freezing a subset of particles in the liquid phase, simulations support the existence of an underlying thermodynamic phase transition, whereas the DF theory remains unexplored.

View Article and Find Full Text PDF

We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid-a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain.

View Article and Find Full Text PDF

In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione3uvtrh5vnve6gge9iug8gj0ae964hkn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once