Publications by authors named "Rajesh Chowdhary"

Background: Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs).

View Article and Find Full Text PDF

Information on Protein Interactions (Pls) is valuable for biomedical research, but often lies buried in the scientific literature and cannot be readily retrieved. While much progress has been made over the years in extracting Pls from the literature using computational methods, there is a lack of free, public, user-friendly tools for the discovery of Pls. We developed an online tool for the extraction of PI relationships from PubMed-abstracts, which we name PIMiner.

View Article and Find Full Text PDF

Electronic Health Records (EHR) contain large amounts of useful information that could potentially be used for building models for predicting onset of diseases. In this study, we have investigated the use of free-text and coded data in Marshfield Clinic's EHR, individually and in combination for building machine learning based models to predict the first ever episode of atrial fibrillation and/or atrial flutter (AFF). We trained and evaluated our AFF models on the EHR data across different time intervals (1, 3, 5 and all years) prior to first documented onset of AFF.

View Article and Find Full Text PDF

Summary: In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.

View Article and Find Full Text PDF

Background: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g.

View Article and Find Full Text PDF

Many genes have been implicated in the pathogenesis of common respiratory and related diseases (RRDs), yet the underlying mechanisms are largely unknown. Differential gene expression patterns in diseased and healthy individuals suggest that RRDs affect or are affected by modified transcription regulation programs. It is thus crucial to characterize implicated genes in terms of transcriptional regulation.

View Article and Find Full Text PDF

Motivation: Molecular interaction information, such as protein-protein interactions and protein-small molecule interactions, is indispensable for understanding the mechanism of biological processes and discovering treatments for diseases. Many databases have been built by manual annotation of literature to organize such information into structured form. However, most databases focus on only one type of interactions, which are often not well annotated and integrated with related functional information.

View Article and Find Full Text PDF

Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms.

View Article and Find Full Text PDF

A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text.

View Article and Find Full Text PDF

Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.

View Article and Find Full Text PDF

Motivation: Protein-protein interaction (PPI) extraction from published biological articles has attracted much attention because of the importance of protein interactions in biological processes. Despite significant progress, mining PPIs from literatures still rely heavily on time- and resource-consuming manual annotations.

Results: In this study, we developed a novel methodology based on Bayesian networks (BNs) for extracting PPI triplets (a PPI triplet consists of two protein names and the corresponding interaction word) from unstructured text.

View Article and Find Full Text PDF

The standard practice in the analysis of promoters is to select promoter regions of convenient length. This may lead to false results when searching for Transcription Factor Binding Sites (TFBSs), since the sequences may contain coding segments. In such cases, motif detection may single out motifs from the coding regions.

View Article and Find Full Text PDF

Background: Mammalian antimicrobial peptides (AMPs) are effectors of the innate immune response. A multitude of signals coming from pathways of mammalian pathogen/pattern recognition receptors and other proteins affect the expression of AMP-coding genes (AMPcgs). For many AMPcgs the promoter elements and transcription factors that control their tissue cell-specific expression have yet to be fully identified and characterized.

View Article and Find Full Text PDF

Unlabelled: Dragon Promoter Mapper (DPM) is a tool to model promoter structure of co-regulated genes using methodology of Bayesian networks. DPM exploits an exhaustive set of motif features (such as motif, its strand, the order of motif occurrence and mutual distance between the adjacent motifs) and generates models from the target promoter sequences, which may be used to (1) detect regions in a genomic sequence which are similar to the target promoters or (2) to classify other promoters as similar or not to the target promoter group. DPM can also be used for modelling of enhancers and silencers.

View Article and Find Full Text PDF

Motivation: Histone proteins play important roles in chromosomal functions. They are significantly evolutionarily conserved across species, which suggests similarity in their transcription regulation. The abundance of experimental data on histone promoters provides an excellent background for the evaluation of computational methods.

View Article and Find Full Text PDF