Publications by authors named "Rajesh Bhandary"

The formation of imogolite nanotubes is reported to be a kinetic process involving intermediate roof-tile nanostructures. Here, the structural evolution occurring during the synthesis of aluminogermanate double-walled imogolite nanotubes is in situ monitored, thanks to an instrumented autoclave allowing the control of the temperature, the continuous measurement of pH and pressure, and the regular sampling of gas and solution. Chemical analyses confirm the completion of the precursor's conversion with the release of CO, ethanol, and dioxane as main side products.

View Article and Find Full Text PDF

Hydrogen bonds (H-bonds) are highly sensitive to the surrounding environments owing to their dipolar nature, with polar solvents kown to significantly weaken H-bonds. Herein, the stability of the H-bonding motif ureidopyrimidinone (UPy) is investigated, embedded into a highly polar polymeric ionic liquid (PIL) consisting of pendant pyrrolidinium bis(trifluoromethylsulfonyl)imide (IL) moieties, to study the influence of such ionic environments on the UPy H-bonds. The content of the surrounding IL is changed by addition of an additional low molecular weight IL to further boost the IL content around the UPy moieties in molar ratios of UPy/IL ranging from 1/4 up to 1/113, thereby promoting the polar microenvironment around the UPy-H-bonds.

View Article and Find Full Text PDF

Polymer electrolytes (PEs) are a promising alternative to overcome shortcomings of conventional lithium ion batteries (LiBs) and make them safer for users. Introduction of self-healing features in PEs additionally leads to prolonged life-time of LIBs, thus tackling cost and environmental issues. We here present solvent free, self-healable, reprocessable, thermally stable, conductive poly(ionic liquid) (PIL) consisting of pyrrolidinium-based repeating units.

View Article and Find Full Text PDF

Within the era of battery technology, the urgent demand for improved and safer electrolytes is immanent. In this work, novel electrolytes, based on pyrrolidinium-bistrifluoromethanesulfonyl-imide polymeric ionic liquids (POILs), equipped with quadrupolar hydrogen-bonding moieties of ureido-pyrimidinone (UPy) to mediate self-healing properties were synthesized. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was employed using S,S-dibenzyl trithiocarbonate as the chain transfer agent to produce precise POILs with a defined amount of UPy and POIL-moieties.

View Article and Find Full Text PDF

We here demonstrate the preparation of composite polymer electrolytes (CPEs) for Li-ion batteries, applicable for 3D printing process via fused deposition modeling. The prepared composites consist of modified poly(ethylene glycol) (PEG), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and SiO-based nanofillers. PEG was successfully end group modified yielding telechelic PEG containing either ureidopyrimidone (UPy) or barbiturate moieties, capable to form supramolecular networks via hydrogen bonds, thus introducing self-healing to the electrolyte system.

View Article and Find Full Text PDF

Introduction: Schizophrenia treatment needs to cover several psychological interventions and pharmacological treatment for stabilizing the disease course and decreasing relapses. Sexual side effects are a major hindrance to patients and lead to decreased adherence to therapy and reduced quality of life. Recently, several studies outlined that sexual dysfunction is one of the most distressing side effects of antipsychotics and a major cause of a poor quality of life.

View Article and Find Full Text PDF