Publications by authors named "Rajesh Bera"

Article Synopsis
  • AgSe colloidal quantum dots (CQDs) are being explored for mid- and long-wave infrared optoelectronics due to their environmentally friendly properties and unique intraband transitions.
  • The study focuses on how multicarrier interactions, especially Auger recombination, affect the optoelectronic properties of AgSe CQDs, making it crucial to understand their excited-state dynamics.
  • Using a femtosecond mid-infrared transient absorption spectrometer, the research shows that Auger processes vary with doping levels and increase as the Fermi energy approaches the 1P state, with calculated intraband Auger coefficients being significantly larger than those in similar materials.
View Article and Find Full Text PDF

In search of heavy metal-free mid-IR active colloidal materials, self-doped silver selenide colloidal quantum dots (CQDs) can be an alternative offering tunable mid-IR wavelength with a narrow bandwidth. One of the challenges in the study of the intraband transition is developing a method to widen the intraband transition energy range as well as reducing the toxicity of the materials. Here, we present AgSe ( > 2) CQDs exhibiting an intraband transition up to 0.

View Article and Find Full Text PDF

Realizing bright colloidal infrared emitters in the midwavelength infrared (or mid-IR), which can be used for low-power IR light-emitting diodes (LEDs), sensors, and deep-tissue imaging, has been a challenge for the last few decades. Here, we present colloidal tellurium nanowires with strong emission intensity at room temperature and even lasing at 3.6 μm (ω) under cryotemperature.

View Article and Find Full Text PDF

Intraband transitions of colloidal semiconductor nanocrystals, or the electronic transitions occurring in either the conduction band or valence band, have recently received considerable attention because utilizing the intraband transitions provides new approaches for applications such as photodetectors, imaging, solar cells, lasers, and so on. In the past few years, it has been revealed that observing the intraband transition is not limited for temporal measurement such as ultrafast spectroscopy but available for steady-state measurement even under ambient conditions with the help of self-doped semiconductor nanocrystals. Considering the large absorption coefficient of the steady-state intraband transition comparable to that of the bandgap transition, the use of the intraband transition will be promising for both fundamental and application studies.

View Article and Find Full Text PDF

Here, we have synthesized rod and flake shaped morphology of porphyrin aggregates from 5, 10, 15, 20-tetra (4-n-octyloxyphenyl) porphyrin (4-opTPP) molecule which are evident from scanning electron microscopy (SEM). The formation of J-type aggregation is evident from steady state and time-resolved fluorescence spectroscopic studies. Ultrafast transient absorption spectroscopic studies reveal that the excited state lifetime is controlled by the morphology and the time constant for S→S relaxation changes from 3.

View Article and Find Full Text PDF

Considerable attention has been paid to designing graphene based 2D hybrid nanostructures for their potential applications in various areas from healthcare to energy harvesting. Herein, we have prepared 2D-2D hybrid structures of 2D CdSe nanoplatelets (NPLs) with thiol (-SH) functionalized reduced graphene oxide (G-Ph-SH). Microscopic and spectroscopic studies reveal that the G-Ph-SH surface is successfully decorated by CdSe NPLs through a thiophenol (-SH) linker.

View Article and Find Full Text PDF

The development of drug delivery systems with microencapsulated therapeutic agents is a promising approach to the sustained and controlled delivery of various drug molecules. The incorporation of dual release kinetics to such delivery devices further adds to their applicability. Herein, novel core-shell scaffolds composed of sodium deoxycholate and trishydroxymethylaminomethane (NaDC-Tris) have been developed with the aim of delivering two different drugs with variable release rates using the same delivery vehicle.

View Article and Find Full Text PDF

Correction for 'An efficient charge separation and photocurrent generation in the carbon dot-zinc oxide nanoparticle composite' by Monoj Kumar Barman et al., Nanoscale, 2017, 9, 6791-6799.

View Article and Find Full Text PDF

The development of light harvesting systems based on heterostructures for efficient conversion of solar energy to renewable energy is an emerging area of research. Here, we have designed heterostructures by using carbon dots (C-dots) and zinc oxide nanoparticles (ZnO NP) to develop an efficient light harvesting system. Interestingly, the conduction band and the valence band positions of ZnO NP are lower than the LUMO and HOMO positions of C-dots in this type II heterostructure of C dot-ZnO NP, which causes efficient charge separation and photocurrent generation.

View Article and Find Full Text PDF

Polymer-graphene nanocomposites are promising candidates for light harvesting applications such as photocatalysis and photovoltaics, where significant charge separation occurs due to photoinduced electron transfer. Much attention has been paid to using reduced graphene oxide (r-GO) as template for anchoring various nanomaterials due to its efficient electron accepting and transport properties. Here, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) nanoparticles are prepared from MEH-PPV polymer and the change in photophysical properties upon formation of polymer nanoparticles (PNPs) from the molecular state are investigated by using steady-state and time-resolved spectroscopy.

View Article and Find Full Text PDF

The ultraviolet light component in the solar spectrum is known to cause several harmful effects, such as allergy, skin ageing, and skin cancer. Thus, current research attention has been paid to the design and fundamental understanding of sunscreen-based materials. One of the most abundantly used sunscreen molecules is Avobenzone (AB), which exhibits two tautomers.

View Article and Find Full Text PDF

Graphene-based hybrid nanostructures have recently emerged as a new class of functional materials for light-energy conversion and storage. Here, we have synthesized reduced graphene oxide (RGO)-semiconductor composites to improve the efficiency of photocatalysis. Zero-dimensional CdS nanoparticles (0D), one-dimensional CdS nanorods (1D), and two-dimensional CdS nanosheets (2D) are grafted on the RGO sheet (2D) by a surface modification method using 4-aminothiophenol (4-ATP).

View Article and Find Full Text PDF

Palladium(0) has been immobilized into the silica-based mesoporous material to develop catalyst Pd(0)-MCM-41, which is found to be highly active in carbon-carbon coupling reactions. [Pd(NH3)4]2+ ions have been incorporated into the mesoporous material during synthesis of MCM-41 and subsequently upon treatments with hydrazine hydrate Pd2+ ions present in mesoporous silica matrix were reduced to Pd(0) almost instantaneously. The catalyst has been characterized by small-angle X-ray diffraction, N2 sorption, and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

A layered oxo-vanadium(IV) dihydrogen phosphate, {VO(H2PO 4)2} n has been synthesized hydrothermally and characterized by several physicochemical methods. Single-crystal X-ray analysis (crystal system, tetragonal; space group, P4/ ncc; unit cell dimensions, a = b = 8.9632(4), c = 7.

View Article and Find Full Text PDF

A complex moiety containing copper (II) has been anchored covalently into the organic-modified Si-MCM-41 to prepare a new catalyst. The amine group containing organic moiety 3-aminopropyl-triethoxysilane has been first anchored on the surface of Si-MCM-41 via silicon alkoxide route. The amine group upon condensation with salicyldehyde affords a bidentate ligand in the mesoporous matrix for anchoring copper(II) ions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontkvrncqdploni052eb0tnh5m5jmb63qg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once