The focus of the present work was to develop co-amorphous dispersion (CAD) formulations of tacrolimus (TAC) using sucrose acetate isobutyrate as a carrier, evaluate by in vitro and in vivo methods and compare its performance with hydroxypropyl methylcellulose (HPMC) based amorphous solid dispersion (ASD) formulation. CAD and ASD formulations were prepared by solvent evaporation method followed by characterization by Fourier transformed infrared spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), dissolution, stability, and pharmacokinetics. XRPD and DSC indicated amorphous phase transformation of the drug in the CAD and ASD formulations, and dissolved more than 85% of the drug in 90 min.
View Article and Find Full Text PDFThe focus of the present investigation was to develop amorphous glassy solutions (AGSs) of BCS Class II and IV drugs using sucrose acetate isobutyrate (SAIB). The drugs studied were rifaximin (RFX), dasatinib (DST), aripiprazole (APZ), dolutegravir (DLT), cyclosporine (CYS), itraconazole (ITZ), tacrolimus (TAC), sirolimus (SRL), aprepitant (APT), and carbamazepine (CBZ). AGSs were prepared by dissolving known quantity of the drug in the SAIB at 120 (TAC and APZ), 140 (CYS) or 150 C (RFX, DST, DLT, ITZ, SRL, APT, and CBZ).
View Article and Find Full Text PDFThe focus of the present investigation was to develop a predictive dissolution model for tablets coated with blends of cellulose acetate butyrate (CAB) 171-15 and cellulose acetate phthalate (C-A-P) using the design of experiment and chemometric approaches. Diclofenac sodium was used as a model drug. Coating weight gain (X, 5, 7.
View Article and Find Full Text PDF