ACS Appl Mater Interfaces
May 2014
In this study, we focus on the resolution limits for quasi 2-D single lines synthesized via focused electron-beam-induced direct-write deposition at 5 and 30 keV in a scanning electron microscope. To understand the relevant proximal broadening effects, the substrates were thicker than the beam penetration depth and we used the MeCpPt(IV)Me3 precursor under standard gas injection system conditions. It is shown by experiment and simulation how backscatter electron yields increase during the initial growth stages which broaden the single lines consistent with the backscatter range of the deposited material.
View Article and Find Full Text PDFA Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features.
View Article and Find Full Text PDFWe present an inverse approach for studying hydrogen microstructure in amorphous silicon. The approach consists of generating a prior distribution (of spins/hydrogen) by inverting experimental nuclear magnetic resonance (NMR) data, which is subsequently superimposed on a network of amorphous silicon. The resulting network is then relaxed using a total-energy functional to obtain a stable, low-energy configuration such that the initial spin distribution is minimally perturbed.
View Article and Find Full Text PDFThe ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations.
View Article and Find Full Text PDFRecent experiments on hydrogenated amorphous silicon using infrared absorption spectroscopy have indicated the presence of mono- and divacancies in samples for concentrations of up to 14% hydrogen. Motivated by this observation, we study the microstructure of hydrogen in two model networks of hydrogen-rich amorphous silicon with particular emphasis on the nature of the distribution (of hydrogen), the presence of defects and the characteristic features of the nuclear magnetic resonance spectra at low and high concentrations of hydrogen. Our study reveals the presence of vacancies, which are the built-in features of the model networks.
View Article and Find Full Text PDF