()9-Oxooctadec-10-en-12-ynoic acid is found to mediate its antidiabetic activity by increasing insulin-stimulated glucose uptake in L6 myotubes by activating the phosphoinositide 3-kinase (PI3K) pathway. A simultaneous study of site-specific modification followed by structure-activity relationship provides a tremendous scope for exploiting the bioactivity of the parent molecule. Therefore, in the present study, we focused on site-specific modification of ()9-oxooctadec-10-en-12-ynoic acid () to generate multiple derivatives and extensive structure-activity relationship (SAR) studies.
View Article and Find Full Text PDFIntensive exposure to insecticides has resulted in the evolution of insecticide resistance in the mosquitoes. We tested the bio-efficacy of two Culex quinquefasciatus Say (Diptera: Culicidae) laboratory strains differentially bio-responsive to pyrethroids to understand the comparative efficacy of different polyfluorobenzyle and conventional pyrethroid molecules and the role of piperonyl butoxide (PBO) in synergizing these molecules in increased tolerance of mosquitoes to these molecules. We have taken deltamethrin (α-cyano pyrethroid with phenoxybenzyl moiety); permethrin (phenoxybenzyl pyrethroid without an α-cyano group); transfluthrin, dimefluthrin, metofluthrin, and meperfluthrin (polyfluorinated benzyl compounds); and prallethrin (modified cyclopentadienone compound) for this study.
View Article and Find Full Text PDFIn an attempt to discover new scaffolds for anti-diabetic activity from plants, we screened extracts from Ixora brachiata Roxb. for their effect on glucose uptake in L6 myotubes. The petroleum (PE) extract of the plant showed a significant increase in insulin stimulated glucose uptake by L6 myotubes.
View Article and Find Full Text PDFThe present work describes the anticancer activity of Ophiobolin A isolated from the endophytic fungus Bipolaris setariae. Ophiobolin A was isolated using preparative HPLC and its structure was confirmed by HRMS, (1)H NMR, (13)C NMR, COSY, DEPT, HSQC and HMBC. It inhibited solid and haematological cancer cell proliferation with IC50 of 0.
View Article and Find Full Text PDFAstragalin was isolated for the first time along with (-)hinokinin, aristolactam I and aristolochic acids (I & II) from the extracts of Aristolochia indica L. using a new, efficient preparative HPLC method. A reversed-phase HPLC method of analysis was developed to analyse the isolated compounds.
View Article and Find Full Text PDFBackground And Purpose: 9,10-Dihydro-2,5-dimethoxyphenanthrene-1,7-diol (RSCL-0520) is a phenanthrene isolated from Eulophia ochreata, one of the Orchidaceae family, known by local tradition to exhibit medicinal properties. However, no anti-inflammatory activity or any molecular mechanisms involved have been reported or elucidated. Here, for the first time, we evaluate the anti-inflammatory properties of RSCL-0520 on responses induced by lipopolysaccharide (LPS) and mediated via Toll-like receptors (TLRs).
View Article and Find Full Text PDFWe investigate the role of self-assembly monolayers in modulating the response of organic field-effect transistors. Alkanethiol monolayers of chain length n are self-assembled on the source and drain electrodes of pentacene field-effect transistors. The charge carrier mobility mu exhibits large fluctuations correlated with odd-even n.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2006
When a local mechanical perturbation is applied to the surface of a thin film of a mechanically interlocked molecule (a rotaxane), the molecules self-organize into periodic arrays of discrete dots or lines. The dimensionality of the nanostructures depends on whether the mechanical stimulus acts along a 1D line or over a 2D area. The size (50-500 nm) and periodicity (100-600 nm) of the patterns are controlled solely by the film thickness.
View Article and Find Full Text PDFThe self-organization of rotaxane thin films into spatially correlated nanostructures is shown to occur upon a thermal stimulus. The mechanism of formation of nanostructures and their organization has been investigated using atomic force microscopy, bright field transmission electron microscopy, selected area electron diffraction, and molecular mechanics simulations. The evolution of the nanostructures follows a complex pathway, where a rotaxane thin film first dewets from the substrate to form nanosized droplets.
View Article and Find Full Text PDF