Publications by authors named "Rajendra Bari"

Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied.

View Article and Find Full Text PDF

In Arabidopsis, the flagellin-derived peptide flg22 elevates antibacterial resistance [1] and inhibits growth [2] upon perception via the leucine-rich repeat receptor-like kinase Flagellin-Sensitive 2 (FLS2) [3]. DELLA proteins are plant growth repressors whose degradation is promoted by the phytohormone gibberellin [4]. Here, we show that DELLA stabilization contributes to flg22-induced growth inhibition.

View Article and Find Full Text PDF

Plant hormones play important roles in regulating developmental processes and signalling networks involved in plant responses to a wide range of biotic and abiotic stresses. Salicylic acid (SA), jasmonates (JA) and ethylene (ET) are well known to play crucial roles in plant disease and pest resistance. However, the roles of other hormones such as abscisic acid (ABA), auxin, gibberellin (GA), cytokinin (CK) and brassinosteroid (BL) in plant defence are less well known.

View Article and Find Full Text PDF

Affymetrix ATH1 arrays, large-scale real-time reverse transcription PCR of approximately 2200 transcription factor genes and other gene families, and analyses of metabolites and enzyme activities were used to investigate the response of Arabidopsis to phosphate (Pi) deprivation and re-supply. Transcript data were analysed with MapMan software to identify coordinated, system-wide changes in metabolism and other cellular processes. Phosphorus (P) deprivation led to induction or repression of > 1000 genes involved in many processes.

View Article and Find Full Text PDF

Inorganic phosphate (Pi)-signaling pathways in plants are still largely unknown. The Arabidopsis (Arabidopsis thaliana) pho2 mutant overaccumulates Pi in leaves in Pi-replete conditions. Micrografting revealed that a pho2 root genotype is sufficient to yield leaf Pi accumulation.

View Article and Find Full Text PDF

Summary To overcome the detection limits inherent to DNA array-based methods of transcriptome analysis, we developed a real-time reverse transcription (RT)-PCR-based resource for quantitative measurement of transcripts for 1465 Arabidopsis transcription factors (TFs). Using closely spaced gene-specific primer pairs and SYBR Green to monitor amplification of double-stranded DNA (dsDNA), transcript levels of 83% of all target genes could be measured in roots or shoots of young Arabidopsis wild-type plants. Only 4% of reactions produced non-specific PCR products.

View Article and Find Full Text PDF

An Arabidopsis thaliana mutant, esa1, that shows enhanced susceptibility to the necrotrophic pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina, but has wild-type levels of resistance to the biotrophic pathogens Pseudomonas syringae pv. tomato and Peronospora parasitica. The enhanced susceptibility towards necrotrophic pathogens correlated with a delayed induction of phytoalexin accumulation and delayed induction of the plant defensin gene PDF1.

View Article and Find Full Text PDF