Background: Among the 10% of pancreatic cancers that occur in a familial context, around a third carry a pathogenic variant in a cancer predisposition gene. Genetic studies of pancreatic cancer predisposition are limited by high mortality rates amongst index patients and other affected family members. The genetic risk for pancreatic cancer is often shared with breast cancer susceptibility genes, most notably BRCA2, PALB2, ATM and BRCA1.
View Article and Find Full Text PDFLung cancer is the number one cause of cancer-related death worldwide with cigarette smoking as its major risk factor. Although the incidence of lung cancer in never smokers is rising, this subgroup of patients is underrepresented in genomic studies of lung cancer. Here, we assembled a prospective cohort of 46 never-smoking, nonsmall cell lung cancer (NSCLC) patients and performed whole-exome and low-coverage whole-genome sequencing on tumors and matched germline DNA.
View Article and Find Full Text PDFBackground: In the majority of familial breast cancer (BC) families, the etiology of the disease remains unresolved. To identify missing BC heritability resulting from relatively rare variants (minor allele frequency ≤ 1%), we have performed whole exome sequencing followed by variant analysis in a virtual panel of 492 cancer-associated genes on BC patients from BRCA1 and BRCA2 negative families with elevated BC risk.
Methods: BC patients from 54 BRCA1 and BRCA2-negative families with elevated BC risk and 120 matched controls were considered for germline DNA whole exome sequencing.
Appl Immunohistochem Mol Morphol
March 2015
Somatic mutations in the epidermal growth factor receptor-tyrosine kinase (EGFR-TK) domain of non-small cell lung cancer (NSCLC) influence the responsiveness of these tumors to EGFR-TK inhibitors, indicating their usefulness as a predictive molecular marker. However, for mutation analysis, the amount of clinical material available from NSCLC patients is often very limited, suboptimally preserved, and composed of both normal and tumor cells. As a consequence, the total amount of recovered DNA is frequently very limited, with mutant alleles being often strongly underrepresented, and thus requiring highly sensitive methods for the detection of mutations.
View Article and Find Full Text PDF