Publications by authors named "Rajeev S Bhide"

IRAK4 is an attractive therapeutic target for the treatment of inflammatory conditions. Structure guided optimization of a nicotinamide series of inhibitors has been expanded to explore the IRAK4 front pocket. This has resulted in the identification of compounds such as with improved potency and selectivity.

View Article and Find Full Text PDF

The identification of small molecule inhibitors of IRAK4 for the treatment of autoimmune diseases has been an area of intense research. We discovered novel 4,6-diaminonicotinamides which potently inhibit IRAK4. Optimization efforts were aided by X-ray crystal structures of inhibitors bound to IRAK4.

View Article and Find Full Text PDF

PI3Kδ plays an important role controlling immune cell function and has therefore been identified as a potential target for the treatment of immunological disorders. This article highlights our work toward the identification of a potent, selective, and efficacious PI3Kδ inhibitor. Through careful SAR, the successful replacement of a polar pyrazole group by a simple chloro or trifluoromethyl group led to improved Caco-2 permeability, reduced Caco-2 efflux, reduced hERG PC activity, and increased selectivity profile while maintaining potency in the CD69 hWB assay.

View Article and Find Full Text PDF

As demonstrated in preclinical animal models, the disruption of PI3Kδ expression or its activity leads to a decrease in inflammatory and immune responses. Therefore, inhibition of PI3Kδ may provide an alternative treatment for autoimmune diseases, such as RA, SLE, and respiratory ailments. Herein, we disclose the identification of 7-(3-(piperazin-1-yl)phenyl)pyrrolo[2,1-f][1,2,4]triazin-4-amine derivatives as highly potent, selective and orally bioavailable PI3Kδ inhibitors.

View Article and Find Full Text PDF

Aberrant Class I PI3K signaling is a key factor contributing to many immunological disorders and cancers. We have identified 4-amino pyrrolotriazine as a novel chemotype that selectively inhibits PI3Kδ signaling despite not binding to the specificity pocket of PI3Kδ isoform. Structure activity relationship (SAR) led to the identification of compound 30 that demonstrated efficacy in mouse Keyhole Limpet Hemocyanin (KLH) and collagen induced arthritis (CIA) models.

View Article and Find Full Text PDF

The design, synthesis and characterization of a phosphonate inhibitor of N-acetylneuraminate-9-phosphate phosphatase (HDHD4) is described. Compound 3, where the substrate C-9 oxygen was replaced with a nonlabile CH2 group, inhibits HDHD4 with a binding affinity (IC50 11μM) in the range of the native substrate Neu5Ac-9-P (compound 1, Km 47μM). Combined SAR, modeling and NMR studies are consistent with the phosphonate group in inhibitor 3 forming a stable complex with native Mg(2+).

View Article and Find Full Text PDF

Tumor angiogenesis is a complex and tightly regulated network mediated by various proangiogenic factors. The fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) family of growth factors, and associated tyrosine kinase receptors have a major influence in tumor growth and dissemination and may work synergistically to promote angiogenesis. Brivanib alaninate is the orally active prodrug of brivanib, a selective dual inhibitor of FGF and VEGF signaling.

View Article and Find Full Text PDF

5-Isopropyl-6-(5-methyl-1,3,4-oxadiazol-2-yl)-N-(2-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4-amine (BMS-645737) is a potent and selective vascular endothelial growth factor receptor-2 antagonist. In this study, liquid chromatography/tandem mass spectrometry and NMR were used to investigate the biotransformation of BMS-645737 in vitro and in the cynomolgus monkey, dog, mouse, and rat. Metabolic pathways for BMS-645737 included multistep processes involving both oxidation and conjugation reactions.

View Article and Find Full Text PDF

We report herein a series of substituted N-(1H-pyrrolo[2,3-b]pyridin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4-amines as inhibitors of vascular endothelial growth factor receptor-2 tyrosine kinase. Through structure-activity relationship studies, biochemical potency, pharmacokinetics, and kinase selectivity were optimized to afford BMS-645737 (13), a compound with good preclinical in vivo activity against human tumor xenograft models.

View Article and Find Full Text PDF

A series of amino acid ester prodrugs of the dual VEGFR-2/FGFR-1 kinase inhibitor 1 (BMS-540215) was prepared in an effort to improve the aqueous solubility and oral bioavailability of the parent compound. These prodrugs were evaluated for their ability to liberate parent drug 1 in in vitro and in vivo systems. The l-alanine prodrug 8 (also known as brivanib alaninate/BMS-582664) was selected as a development candidate and is presently in phase II clinical trials.

View Article and Find Full Text PDF

Introduction of the 2,4-difluoro-5-(cyclopropylcarbamoyl)phenylamino group at the C-4 position of the pyrrolo[2,1-f][1,2,4] triazine scaffold led to the discovery of a novel sub-series of inhibitors of VEGFR-2 kinase activity. Subsequent SAR studies on the 1,3,5-oxadiazole ring appended to the C-6 position of this new sub-family of pyrrolotriazines resulted in the identification of low nanomolar inhibitors of VEGFR-2. Antitumor efficacy was observed with compound 37 against L2987 human lung carcinoma xenografts in athymic mice.

View Article and Find Full Text PDF

Substituted 3-((2-(pyridin-2-ylamino)thiazol-5-ylmethyl)amino)benzamides were identified as potent and selective inhibitors of vascular endothelial growth factor receptor-2 (VEGFR-2) kinase activity. The enzyme kinetics associated with the VEGFR-2 inhibition of 14 (Ki=49+/-9 nM) confirmed that the aminothiazole-based analogues are competitive with ATP. Analogue 14 demonstrated excellent kinase selectivity, favorable pharmacokinetic properties in multiple species, and robust in vivo efficacy in human lung and colon carcinoma xenograft models.

View Article and Find Full Text PDF

Synthesis and SAR of substituted pyrrolotriazine-4-one analogues as Eg5 inhibitors are described. Many of these analogues displayed potent inhibitory activities in the Eg5 ATPase and A2780 cell proliferation assays. In addition, pyrrolotriazine-4-one analogue 26 demonstrated in vivo efficacy in an iv P388 murine leukemia model.

View Article and Find Full Text PDF

A series of substituted 4-(4-fluoro-1H-indol-5-yloxy)pyrrolo[2,1-f][1,2,4]triazine-based inhibitors of vascular endothelial growth factor receptor-2 kinase is reported. Structure-activity relationship studies revealed that a methyl group at the 5-position and a substituted alkoxy group at the 6-position of the pyrrolo[2,1-f][1,2,4]triazine core gave potent compounds. Biochemical potency, kinase selectivity, and pharmacokinetics of the series were optimized and in vitro safety liabilities were minimized to afford BMS-540215 (12), which demonstrated robust preclinical in vivo activity in human tumor xenograft models.

View Article and Find Full Text PDF

A series of substituted 4-(2,4-difluoro-5-(methoxycarbamoyl)phenylamino)pyrrolo[2,1-f][1,2,4]triazines was identified as potent and selective inhibitors of the tyrosine kinase activity of the growth factor receptors VEGFR-2 (Flk-1, KDR) and FGFR-1. The enzyme kinetics associated with the VEGFR-2 inhibition of compound 50 (K(i) = 52 +/- 3 nM) confirmed that the pyrrolo[2,1-f][1,2,4]triazine analogues are competitive with ATP. Several analogues demonstrated low-nanomolar inhibition of VEGF- and FGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation.

View Article and Find Full Text PDF

Tetrahydroquinoline-based small molecule inhibitors of farnesyltransferase (FT) have been identified. Lead compounds were shown to have nanomolar to sub-nanomolar activity in biochemical assays with excellent potency in a Ras-mutated cellular reversion assay. BMS-316810 (9e), a 0.

View Article and Find Full Text PDF

A versatile synthesis of the suitably functionalized pyrrolo[2,1-f][1,2,4]triazine nucleus is described. SAR at the C-5 and C-6 positions of the 4-(3-hydroxy-4-methylphenylamino)pyrrolo[2,1-f][1,2,4]triazine template led to compounds with good in vitro potency against VEGFR-2 kinase. Glucuronidation of the phenol group is mitigated by incorporation of a basic amino group on the C-6 side chain of the pyrrolotriazine nucleus.

View Article and Find Full Text PDF

Two routes describing the preparation of 4-fluoro-1H-pyrrolo[2,3-b]pyridine (4a) from 1H-pyrrolo[2,3-b]pyridine N-oxide (1) are presented. Regioselective fluorination was achieved using either the Balz-Schiemann reaction or lithium-halogen exchange. [reaction: see text]

View Article and Find Full Text PDF