IEEE Trans Biomed Circuits Syst
April 2016
A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.
View Article and Find Full Text PDFWe demonstrate high bit rate electro-optic modulation in a resonant micrometer-scale silicon modulator over an ambient temperature range of 15 K. We show that low bit error rates can be achieved by varying the bias current through the device to thermally counteract the ambient temperature changes. Robustness in the presence of thermal variations can enable a wide variety of applications for dense on chip electronic photonic integration.
View Article and Find Full Text PDF