Targeted degradation of the cell-surface and extracellular proteins via the endogenous lysosomal degradation pathways, such as lysosome-targeting chimeras (LYTACs), has recently emerged as an attractive tool to expand the scope of extracellular chemical biology. Herein, we report a series of recombinant proteins genetically fused to insulin-like growth factor 2 (IGF2), which we termed iLYTACs, that can be conveniently obtained in high yield by standard cloning and bacterial expression in a matter of days. We showed that both type-I iLYTACs, in which IGF2 was fused to a suitable affibody or nanobody capable of binding to a specific protein target, and type-II iLYTAC (or IGF2-Z), in which IGF2 was fused to the IgG-binding Z domain that served as a universal antibody-binding adaptor, could be used for effective lysosomal targeting and degradation of various extracellular and membrane-bound proteins-of-interest.
View Article and Find Full Text PDFLiving organisms develop functional hard structures such as teeth, bones, and shells from calcium salts through mineralization for managing vital functions to sustain life. However, the exact mechanism or role of biomolecules such as proteins and peptides in the biomineralization process to form defect-free hierarchical structures in nature is poorly understood. In this study, we have extracted, purified, and characterized five major peptides (CBP1-CBP5) from the soluble organic materials (SOMs) of cuttlefish bone (CB) and used for the in vitro mineralization of calcium carbonate crystals.
View Article and Find Full Text PDFSmall-molecule prodrugs have become the main toolbox to improve the unfavorable physicochemical properties of potential therapeutic compounds in contemporary anti-cancer drug development. Many approved small-molecule prodrugs, however, still face key challenges in their pharmacokinetic (PK) and pharmacodynamic (PD) properties, thus severely restricting their further clinical applications. Self-assembled prodrugs thus emerged as they could take advantage of key benefits in both prodrug design and nanomedicine, so as to maximize drug loading, reduce premature leakage, and improve PK/PD parameters and targeting ability.
View Article and Find Full Text PDFSnake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes.
View Article and Find Full Text PDFWe sampled snakes of the genus Xenochrophis from across Northeast India. The snakes were evaluated for both morphological and molecular parameters. Phylogenetic relationship was reconstructed using mitochondrial genes (Cytb, 12s rRNA, ND4).
View Article and Find Full Text PDFSaliva of hematophagous animals, such as ticks, is an excellent source of anticoagulant proteins and polypeptides. Here we describe the identification and characterization of two thrombin inhibitors named as haemathrin 1 and 2 from the salivary gland of tick Haemaphysalis bispinosa using genomic approach. Haemathrins are cysteine-less peptide anticoagulants, which share about 65-70% identity with madanins, and belong to inhibitor I53 superfamily of inhibitors of the MEROPS database.
View Article and Find Full Text PDFSnake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications.
View Article and Find Full Text PDFTo investigate and identify the ticks prevalent in the North East part of India, scanning electron microscope (SEM) and DNA sequence of nuclear second internal transcribed spacer (ITS2) and mitochondrial 16S ribosomal DNA (rDNA) were used. Based on the morphological and molecular analysis, the ticks infesting cattle of North East India were found to be Rhipicephalus (Boophilus) microplus and Haemaphysalis bispinosa. ITS2 and 16S rDNA sequence from R.
View Article and Find Full Text PDF