Background: Thymol is a monoterpene phenol found in thyme species plants. The present study was carried out to investigate the effect of thymol and its molecular mechanism on non-small lung cancer (A549) cells.
Methods: The cytotoxic effect of thymol on A549 cells was assessed via MTT assay.
Daucosterol (DS) is a plant phytosterol which is shown to induce oxidative stress mediated apoptosis in various cancer cell lines. However, the molecular mechanism underlying its cellular action has not been documented against Non- Small Cell Lung Cancer (NSCLC). Therefore, we attempted to decipher the mechanisms responsible for DS-induced anti-proliferation on human NSCLC cells.
View Article and Find Full Text PDFp300/CBP Associated Factor (PCAF), a GNAT family member protein, represent a valid target for therapeutic interventions since its dysfunction has implicated in variety of diseases like cancer, diabetes, inflammatory diseases, etc. Despite its potential for therapeutics, only a small number of PCAF inhibitors were reported. Hence, in this study, the catalytic domain of PCAF was explored to screen novel, potent and cell permeable inhibitor from three small molecule databases like Life Chemical, Maybridge and Chembridge by using Structure Based Virtual Screening (SBVS) method.
View Article and Find Full Text PDFβ-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2018
Urinary tract infections are the utmost common bacterial infections caused by Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. These uropathogens resist the action of several antibiotics due to their ability to form biofilms. Most of these bacterial pathogens use the quorum sensing (QS) machinery to co-ordinate their cells and regulate several virulence factors and biofilm formation.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer related deaths both in developed and developing countries. Since majority of the existing therapeutic methods harms both normal and malignant cells, a viable alternative is to switch into safe and beneficial traditional medicinal plants. Hence the present study was framed to identify selective anti-lung cancer agents from the medicinal plant Grewia tiliaefolia (GT).
View Article and Find Full Text PDFIn the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors.
View Article and Find Full Text PDFIn recent years, natural edible products have been found to be important therapeutic agents for the treatment of chronic human diseases including cancer, cardiovascular disease, and neurodegeneration. Curcumin is a well-known diarylheptanoid constituent of turmeric which possesses anticancer effects under both pre-clinical and clinical conditions. Moreover, it is well known that the anticancer effects of curcumin are primarily due to the activation of apoptotic pathways in the cancer cells as well as inhibition of tumor microenvironments like inflammation, angiogenesis, and tumor metastasis.
View Article and Find Full Text PDFDietary guidelines published in the past two decades have acknowledged the beneficial effects of myricetin, an important and common type of herbal flavonoid, against several human diseases such as inflammation, cardiovascular pathologies, and cancer. An increasing number of studies have shown the beneficial effects of myricetin against different types of cancer by modifying several cancer hallmarks including aberrant cell proliferation, signaling pathways, apoptosis, angiogenesis, and tumor metastasis. Most importantly, myricetin interacts with oncoproteins such as protein kinase B (PKB) (Akt), Fyn, MEK1, and JAK1-STAT3 (Janus kinase-signal transducer and activator of transcription 3), and it attenuates the neoplastic transformation of cancer cells.
View Article and Find Full Text PDF