White matter pathways, typically studied with diffusion tensor imaging (DTI), have been implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, due to limited sample sizes and the predominance of single-site studies, the generalizability of OCD classification based on diffusion white matter estimates remains unclear. Here, we tested classification accuracy using the largest OCD DTI dataset to date, involving 1336 adult participants (690 OCD patients and 646 healthy controls) and 317 pediatric participants (175 OCD patients and 142 healthy controls) from 18 international sites within the ENIGMA OCD Working Group.
View Article and Find Full Text PDFBackground: The ability to predict the disease course of individuals with major depressive disorder (MDD) is essential for optimal treatment planning. Here, we used a data-driven machine learning approach to assess the predictive value of different sets of biological data (whole-blood proteomics, lipid metabolomics, transcriptomics, genetics), both separately and added to clinical baseline variables, for the longitudinal prediction of 2-year remission status in MDD at the individual-subject level.
Methods: Prediction models were trained and cross-validated in a sample of 643 patients with current MDD (2-year remission n = 325) and subsequently tested for performance in 161 individuals with MDD (2-year remission n = 82).
. Deep brain stimulation is a treatment option for patients with refractory obsessive-compulsive disorder. A new generation of stimulators hold promise for closed loop stimulation, with adaptive stimulation in response to biologic signals.
View Article and Find Full Text PDFThe promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by cognitive impairment and large loss of grey matter volume and is the most prevalent form of dementia worldwide. Mild cognitive impairment (MCI) is the stage that precedes the AD dementia stage, but individuals with MCI do not always convert to the AD dementia stage, and it remains unclear why.
Objective: We aimed to assess grey matter loss across the brain at different stages of the clinical continuum of AD to gain a better understanding of disease progression.
Objective: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital.
Design: Retrospective cohort study.
Setting: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020.
Deep learning (DL) methods have been increasingly applied to neuroimaging data to identify patients with psychiatric and neurological disorders. This review provides an overview of the different DL applications within psychiatry and compares DL model accuracy to standard machine learning (SML). Fifty-three articles were included for qualitative analysis, primarily investigating autism spectrum disorder (ASD; n = 22), schizophrenia (SZ; n = 22) and attention-deficit/hyperactivity disorder (ADHD; n = 9).
View Article and Find Full Text PDFObjective: To systematically collect clinical data from patients with a proven COVID-19 infection in the Netherlands.
Design: Data from 2579 patients with COVID-19 admitted to 10 Dutch centers in the period February to July 2020 are described. The clinical data are based on the WHO COVID case record form (CRF) and supplemented with patient characteristics of which recently an association disease severity has been reported.
Resting-state functional magnetic resonance imaging (rs-fMRI) data are 4-dimensional volumes (3-space + 1-time) that have been posited to reflect the underlying mechanisms of information exchange between brain regions, thus making it an attractive modality to develop diagnostic biomarkers of brain dysfunction. The enormous success of deep learning in computer vision has sparked recent interest in applying deep learning in neuroimaging. But the dimensionality of rs-fMRI data is too high (~20 M), making it difficult to meaningfully process the data in its raw form for deep learning experiments.
View Article and Find Full Text PDFSocial transmission of freezing behavior has been conceived of as a one-way phenomenon in which an observer "catches" the fear of another. Here, we use a paradigm in which an observer rat witnesses another rat receiving electroshocks. Bayesian model comparison and Granger causality show that rats exchange information about danger in both directions: how the observer reacts to the demonstrator's distress also influences how the demonstrator responds to the danger.
View Article and Find Full Text PDFTrauma-focused psychotherapy is the first-line treatment for posttraumatic stress disorder (PTSD) but 30-50% of patients do not benefit sufficiently. We investigated whether structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) data could distinguish between treatment responders and non-responders on the group and individual level. Forty-four male veterans with PTSD underwent baseline scanning followed by trauma-focused psychotherapy.
View Article and Find Full Text PDFMeasurements of the extreme ultraviolet (EUV) solar spectral irradiance (SSI) are essential for understanding drivers of space weather effects, such as radio blackouts, and aerodynamic drag on satellites during periods of enhanced solar activity. In this paper, we show how to learn a mapping from EUV narrowband images to spectral irradiance measurements using data from NASA's Solar Dynamics Observatory obtained between 2010 to 2014. We describe a protocol and baselines for measuring the performance of models.
View Article and Find Full Text PDFBackground: Patients with behavioral variant of frontotemporal dementia (bvFTD) initially may only show behavioral and/or cognitive symptoms that overlap with other neurological and psychiatric disorders. The diagnostic accuracy is dependent on progressive symptoms worsening and frontotemporal abnormalities on neuroimaging findings. Predictive biomarkers could facilitate the early detection of bvFTD.
View Article and Find Full Text PDFThe spatial pattern of task-related brain activity in fMRI studies might be expected to change according to several variables such as handedness and age. However this spatial heterogeneity might also be due to other unmodeled sources of inter-subject variability. Since group-level results reflect patterns of task-evoked brain activity common to most of the subjects in the sample, they could conceal the presence of subgroups recruiting other brain regions beyond the common pattern.
View Article and Find Full Text PDFImportance: Individuals with autism spectrum disorder (ASD) exhibit severe difficulties in social interaction, motor coordination, behavioral flexibility, and atypical sensory processing, with considerable interindividual variability. This heterogeneous set of symptoms recently led to investigating the presence of abnormalities in the interaction across large-scale brain networks. To date, studies have focused either on constrained sets of brain regions or whole-brain analysis, rather than focusing on the interaction between brain networks.
View Article and Find Full Text PDFSome theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively.
View Article and Find Full Text PDFThe insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans.
View Article and Find Full Text PDF