For the first time, an energy-efficient and eco-friendly technology for the conversion of abundantly available kitchen waste, specifically waste cooked rice water (WCRW) to drop-in- biofuels, namely, butyl levulinate (BL), has been explored. The synthesis of BL was accomplished employing butyl alcohol (BA) and WCRW in an energy-efficient UV (5W each UVA and UVB)-near-infrared (100W) irradiation assisted spinning (120 rpm) batch reactor (UVNIRSR) in the presence of TiO-Amberlyst 15 (TA15) photo-acidic catalyst system (PACS). The optimal 95.
View Article and Find Full Text PDFWe conduct all-atom molecular dynamics simulations to systematically investigate the underlying mechanisms governing ion transport through a sub-nanometer pore decorated with negative charges in a "Janus" MoSSe membrane. The charge imbalance between S and Se atoms on each side of the membrane induces different types of ion adsorption processes depending on the pore inner charge configuration, and the polarity of external biases, which leads to asymmetry in ionic - characteristics. Statistical analysis of the total translocation times including adsorption-desorption processes, and ion dwell times indicates that potassium ions predominantly remain adsorbed during their interaction with the membrane before undertaking a quick translocation through the pore.
View Article and Find Full Text PDFFor the first time, a synergistic energy-efficient combination of microwave-xenon (MW-XE) irradiations in presence of photoactive ternary acidic deep eutectic solvents (TADES) has been applied for intensification of ethyl levulinate synthesis from delignified sugarcane bagasse (DSB) under mild (90 min, 90 °C) and environmentally benign process conditions. The Taguchi orthogonal designed optimized conditions (20 W/cm of MW specific irradiation power input, 1 mol/mol of FeCl to citric acid ratio, 90 min of reaction time, 150 W of XE specific power input) rendered maximum 61.3 mol% of EL yield (selectivity: 87.
View Article and Find Full Text PDFIonic transport through a graphene biomimetic subnanometer (sub-nm) pore of arbitrary shape and realistically decorated by intrinsic negatively charged sites is investigated by all-atom molecular dynamics (MD) simulations. In the presence of external electric fields, cation trapping-assisted translocation occurs in the vicinity of the 2D subnanometer pore, while the anion current is blocked by the negative charges. The adsorbed cations in such asymmetrically charged nanopores are located on the top of the nanopore instead of blocking the pore, as suggested previously in highly symmetric pores such as crown ethers.
View Article and Find Full Text PDFThe unprecedented growth in the easy availability of photo-editing tools has endangered the power of digital images. An image was supposed to be worth more than a thousand words, but now this can be said only if it can be authenticated or the integrity of the image can be proved to be intact. In this paper, we propose a digital image forensic technique for JPEG images.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2023
An exploratory work involving waste printed wiring board (WPWB)-derived inexpensive silver oxide (AgO)-grafted silica-alumina composite photocatalyst (SAA) using quartz halogen and UVA irradiations (QHUV) (wavelength: 315 nm-1000 nm) has been revealed. The efficacy of the novel SAA photocatalyst was assessed in the synthesis of fermentable sugar (FS) by photo-hydrolysis of pure crystalline cellulose (PCC) in the QHUV-assisted batch reactor (QHUVBR), and the process parameters (5% AgNO doping, 7.5% catalyst concentration, 20 min PH time, and 80 °C PH temperature) were optimized using Taguchi orthogonal array design.
View Article and Find Full Text PDFValorization ofe-waste, i.e. waste printed circuit board (WPCB) through mechano-chemical activation to obtain silica as the catalyst support and alumina as the catalyst precursor for eco-friendly synthesis of inexpensive highly proficient photocatalyst has been explored.
View Article and Find Full Text PDFThe present work encompasses the production of biodiesel from an inexpensive waste, viz., used rice bran oil (URBO) through concurrent esterification and transesterification reactions employing the prepared waste duck bone (WDB)-derived natural hydroxyapatite (NAHAp) supported vanadium impregnated solid catalyst (VNAHAp). The optimal VNAHAp catalyst possessed 92.
View Article and Find Full Text PDFSubstitutional doping has traditionally been used to modulate the existing properties of semiconductors and introduce new exciting properties, especially in two-dimensional materials. In this work, we have investigated the impact of substitutional doping (using group III, IV, V, and VI dopants) on the structural, electronic, spin, and optical properties of GeSe monolayer by using first-principles calculations based on density functional theory. Our calculated binding energies, formation energies and phonon dispersion curves of the doped systems support their stability and hence the feasibility of physical realization.
View Article and Find Full Text PDFThis article reports an energy-efficient green pathway for the sustainable conversion of an abundant agro-residue viz. wheat husk (WH) into fermentable sugar (FS). The intensification effects of tungsten-halogen (TH) (150 W) and ultraviolet (UV) (100 W) irradiations on the pretreatment and subsequent hydrolysis of WH have been experimented with and optimized by Taguchi Orthogonal Design Array (TODA).
View Article and Find Full Text PDFBackground: Granny Smith (GS) apple has low protein content and poor antimicrobial properties; hence it has been blended with Aloe vera (AV; high ascorbic acid, antimicrobial and antioxidant properties) and soybean flour (SF; rich in phenols, flavonoids, ascorbic acid, total antioxidant and protein) in different proportions to obtain fortified GS, i.e. GSAVSF.
View Article and Find Full Text PDFA glass fiber-epoxy resin (GFER) framework derived from mixed waste printed circuit boards (MWPCBs) was utilized to prepare a cost-effective, reusable Mo-Cu bimetallic Bronsted-Lewis solid acid catalyst through wet-impregnation under near-infrared radiation (NIRR) activation. The efficacy of the novel Mo-Cu catalyst was assessed in the synthesis of glucose through hydrolysis of jute () fiber, and the process parameters were optimized (Mo precursor loading: 1.0 wt %, catalyst concentration: 5 wt %, hydrolysis temperature: 80 °C, and hydrolysis time: 10 min) through Taguchi orthogonal design.
View Article and Find Full Text PDFBackground: Watermelon, a tropical seasonal fruit with high nutrient content, requires preservation through drying due to its perishable nature. Nevertheless, drying of watermelon through conventional processes has a negative impact either on the drying time or on the final product quality. In this work, osmotic dehydration of watermelon followed by far-infrared radiation-assisted vacuum drying (FIRRAVD) was optimized to develop dehydrated watermelon with minimum moisture content.
View Article and Find Full Text PDF