Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes.
View Article and Find Full Text PDFGlycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage.
View Article and Find Full Text PDFAlternanthera philoxeroides (Mart.) is a tropical weed commonly known as alligator weed. It grows rapidly within a small span of time and easily available all over the world.
View Article and Find Full Text PDFThis study investigates if glycyrrhizin, a constituent of licorice (Glycyrrhiza glabra) root, is able to treat the complications (insulin resistance, hyperglycemia, dyslipidemia and oxidative stress) of metabolic syndrome. Metabolic syndrome was induced in rats by feeding a fructose-enriched (60%) diet for six weeks, after which single dose of glycyrrhizin (50 mg/kg body weight) was administered intraperitoneally. Different biochemical parameters from blood were estimated during three weeks after treatment.
View Article and Find Full Text PDFIncreased glucose concentration in diabetes mellitus causes glycation of several proteins, leading to changes in their properties. Although glycation-induced functional modification of myoglobin is known, structural modification of the protein has not yet been reported. Here, we have studied glucose-modified structural changes of the heme protein.
View Article and Find Full Text PDF