Publications by authors named "Rajarshi P Ghosh"

Article Synopsis
  • Eukaryotic genomes, like those in humans, often contain large arrays of satellite DNA, such as Human Satellite 3 (HSat3), that are not well understood, especially in terms of their function outside of centromere biology.
  • HSat3 comprises about 2% of the human genome, forms massive arrays, and has been largely excluded from genomic studies until recently, leading to a lack of knowledge about its functional roles.
  • Recent research uncovered that HSat3 has a high density of transcription factor (TF) motifs, particularly related to the Hippo signaling pathway, and reveals that the TEAD transcription factor interacts with the co-activator YAP at HSat3 regions, suggesting a novel link between
View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new method for fast and efficient 3D tracking of multiple chromosomal loci within live mammalian cells, utilizing advanced imaging techniques and nanobody arrays.
  • The methodology enables tracking both rapid chromatin movements (at 50 Hz) and slower dynamics over several hours, revealing significant variability between cells and directional differences in movement.
  • Additionally, the research highlights how inhibiting actin polymerization affects chromatin dynamics, resulting in increased diffusion rates and more uniform movement patterns, which could aid in understanding chromatin behaviors related to diseases.
View Article and Find Full Text PDF

Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology.

View Article and Find Full Text PDF

DNA topology and alternative DNA structures are implicated in regulating diverse biological processes. Although biomechanical properties of these structures have been studied extensively in vitro, characterization in vivo particularly in multicellular organisms, is limited. We devised new methods to map DNA supercoiling and single-stranded DNA in embryos and diapause larvae.

View Article and Find Full Text PDF

Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality.

View Article and Find Full Text PDF

Segmenting cell nuclei within microscopy images is a ubiquitous task in biological research and clinical applications. Unfortunately, segmenting low-contrast overlapping objects that may be tightly packed is a major bottleneck in standard deep learning-based models. We report a Nuclear Segmentation Tool (NuSeT) based on deep learning that accurately segments nuclei across multiple types of fluorescence imaging data.

View Article and Find Full Text PDF

Yes-associated protein 1 (YAP) is a transcriptional regulator with critical roles in mechanotransduction, organ size control, and regeneration. Here, using advanced tools for real-time visualization of native YAP and target gene transcription dynamics, we show that a cycle of fast exodus of nuclear YAP to the cytoplasm followed by fast reentry to the nucleus ("localization-resets") activates YAP target genes. These "resets" are induced by calcium signaling, modulation of actomyosin contractility, or mitosis.

View Article and Find Full Text PDF

By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 and when reconstituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease.

View Article and Find Full Text PDF

The Satb1 genome organizer regulates multiple cellular and developmental processes. It is not yet clear how Satb1 selects different sets of targets throughout the genome. Here we have used live-cell single molecule imaging and deep sequencing to assess determinants of Satb1 binding-site selectivity.

View Article and Find Full Text PDF

We describe three optical tags, ArrayG, ArrayD and ArrayG/N, for intracellular tracking of single molecules over milliseconds to hours. ArrayG is a fluorogenic tag composed of a green fluorescent protein-nanobody array and monomeric wild-type green fluorescent protein binders that are initially dim but brighten ~26-fold on binding with the array. By balancing the rates of binder production, photobleaching and stochastic binder exchange, we achieve temporally unlimited tracking of single molecules.

View Article and Find Full Text PDF

Spatial organization of the genome plays a central role in gene expression, DNA replication, and repair. But current epigenomic approaches largely map DNA regulatory elements outside of the native context of the nucleus. Here we report assay of transposase-accessible chromatin with visualization (ATAC-see), a transposase-mediated imaging technology that employs direct imaging of the accessible genome in situ, cell sorting, and deep sequencing to reveal the identity of the imaged elements.

View Article and Find Full Text PDF

Cells and multicellular structures can mechanically align and concentrate fibers in their ECM environment and can sense and respond to mechanical cues by differentiating, branching, or disorganizing. Here we show that mammary acini with compromised structural integrity can interconnect by forming long collagen lines. These collagen lines then coordinate and accelerate transition to an invasive phenotype.

View Article and Find Full Text PDF

Methylated CpG Binding Protein 2 (MeCP2) is a nuclear protein named for its ability to selectively recognize methylated DNA. Much attention has been focused on understanding MeCP2 structure and function in the context of its role in Rett syndrome, a severe neurodevelopmental disorder that afflicts one in 10,000-15,000 girls. Early studies suggested a connection between DNA methylation, MeCP2, and establishment of a repressive chromatin structure at specific gene promoters.

View Article and Find Full Text PDF

Sporadic mutations in the hMeCP2 gene, coding for a protein that preferentially binds symmetrically methylated CpGs, result in the severe neurological disorder Rett syndrome (RTT). In the present work, employing a wide range of experimental approaches, we shed new light on the many levels of MeCP2 interaction with DNA and chromatin. We show that strong methylation-independent as well as methylation-dependent binding by MeCP2 is influenced by DNA length.

View Article and Find Full Text PDF

The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional "higher order" levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem.

View Article and Find Full Text PDF

Methylated DNA binding protein 2 (MeCP2) is a methyl CpG binding protein whose key role is the recognition of epigenetic information encoded in DNA methylation patterns. Mutation or misregulation of MeCP2 function leads to Rett syndrome as well as a variety of other autism spectrum disorders. Here, we have analyzed in detail the properties of six individually expressed human MeCP2 domains spanning the entire protein with emphasis on their interactions with each other, with DNA, and with nucleosomal arrays.

View Article and Find Full Text PDF

Most cases of Rett syndrome (RTT) are caused by mutations in the methylated DNA-binding protein, MeCP2. Here, we have shown that frequent RTT-causing missense mutations (R106W, R133C, F155S, T158M) located in the methylated DNA-binding domain (MBD) of MeCP2 have profound and diverse effects on its structure, stability, and DNA-binding properties. Fluorescence spectroscopy, which reports on the single tryptophan in the MBD, indicated that this residue is strongly protected from the aqueous environment in the wild type but is more exposed in the R133C and F155S mutations.

View Article and Find Full Text PDF

hMeCP2 (human methylated DNA-binding protein 2), mutations of which cause most cases of Rett syndrome (RTT), is involved in the transmission of repressive epigenetic signals encoded by DNA methylation. The present work focuses on the modifications of chromatin architecture induced by MeCP2 and the effects of RTT-causing mutants. hMeCP2 binds to nucleosomes close to the linker DNA entry-exit site and protects approximately 11 bp of linker DNA from micrococcal nuclease.

View Article and Find Full Text PDF

Mutations of the methylated DNA binding protein MeCP2, a multifunctional protein that is thought to transmit epigenetic information encoded as methylated CpG dinucleotides to the transcriptional machinery, give rise to the debilitating neurodevelopmental disease Rett syndrome (RTT). In this in vitro study, the methylation-dependent and -independent interactions of wild-type and mutant human MeCP2 with defined DNA and chromatin substrates were investigated. A combination of electrophoretic mobility shift assays and visualization by electron microscopy made it possible to understand the different conformational changes underlying the gel shifts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhkmv86i9ju091ptla9oifu1stk2j665u): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once