Background: Cannabis use disorder (CUD) is a growing public health problem. Early identification of adolescents and young adults at risk of developing CUD in the future may help stem this trend. A logistic regression model fitted using a Bayesian learning approach was developed recently to predict the risk of future CUD based on seven risk factors in adolescence and youth.
View Article and Find Full Text PDFBackground: The prevalence of cannabis use disorder (CUD) has been increasing recently and is expected to increase further due to the rising trend of cannabis legalization. To help stem this public health concern, a model is needed that predicts for an adolescent or young adult cannabis user their personalized risk of developing CUD in adulthood. However, there exists no such model that is built using nationally representative longitudinal data.
View Article and Find Full Text PDFThe ongoing trend toward legalization of cannabis for medicinal/recreational purposes is expected to increase the prevalence of cannabis use disorder (CUD). Thus, it is imperative to be able to predict the quantitative risk of developing CUD for a cannabis user based on their personal risk factors. Yet no such model currently exists.
View Article and Find Full Text PDF