Objective: To examine whether low-dose flutamide administration to normal-weight women with polycystic ovary syndrome (PCOS) reduces abdominal fat deposition, attenuates accelerated lipid accumulation in newly formed adipocytes derived from subcutaneous (SC) abdominal adipose stem cells (ASCs), and/or alters glucose-lipid metabolism.
Design: A double-blind, placebo-controlled randomized clinical trial.
Setting: An academic medical center.
Context: Increased aldo-keto reductase 1C3 (AKR1C3)-mediated conversion of androstenedione (A4) to testosterone (T) promotes lipid storage in subcutaneous (SC) abdominal adipose in overweight/obese polycystic ovary syndrome (PCOS) women.
Objective: This work examines whether an elevated serum T/A4 ratio, as a marker of enhanced AKR1C3 activity in SC abdominal adipose, predicts metabolic function in normal-weight PCOS women.
Methods: This prospective cohort study took place in an academic center and comprised 19 normal-weight PCOS women and 21 age- and body mass index-matched controls.
Objective: To examine whether subcutaneous (SC) abdominal adipose stem cell differentiation into adipocytes in vitro predicts insulin sensitivity (Si) in vivo in normal-weight women with polycystic ovary syndrome (PCOS) and controls.
Design: Prospective cohort study.
Setting: Academic medical center.
Developmental origins of adult disease (DoHAD) refers to critical gestational ages during human fetal development and beyond when the endocrine metabolic status of the mother can permanently program the physiology and/or morphology of the fetus, modifying its susceptibility to disease after birth. The aim of this review is to address how DoHAD plays an important role in the phenotypic expression of polycystic ovary syndrome (PCOS), the most common endocrinopathy of women characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. Clinical studies of PCOS women are integrated with findings from relevant animal models to show how intergenerational transmission of these central components of PCOS are programmed through an altered maternal endocrine-metabolic environment that adversely affects the female fetus and long-term offspring health.
View Article and Find Full Text PDF