Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure.
View Article and Find Full Text PDFProteins play an important role in biological systems and several proteins are used in diagnosis, therapy, food industry Thus, knowledge about the physical properties of the proteins is of utmost importance, which will aid in understanding their function and subsequent applications. The melting temperature () of a protein is one of the essential parameters which gives information about the stability of a protein under different conditions. In the present study, we have demonstrated a method for determining the of proteins using the supramolecular interaction between Quinaldine Red (QR) and proteins.
View Article and Find Full Text PDFThe non-invasive invasive nature of cell-free DNA (cfDNA) as diagnostic, prognostic, and theragnostic biomarkers has gained immense popularity in recent years. The clinical utility of cfDNA biomarkers may depend on understanding their origin and biological significance. Apoptosis, necrosis, and/or active release are possible mechanisms of cellular DNA release into the cell-free milieu.
View Article and Find Full Text PDFPathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.
View Article and Find Full Text PDFAmongst the various existing methods of analyte quantification, fluorescent-based methods, especially the ratiometric methods, continue to gain significant attention due to their high reproducibility, low environmental influence, and self-calibrating behavior. This paper presents the modulation in a monomer-aggregate equilibrium of coumarin-7 (C7) dye at pH ∼ 3, under the influence of a multi-anionic polymer, poly(styrene sulfonate) (PSS), leading to a significant modification in the ratiometric optical signal of the dye. At pH ∼ 3, cationic C7 formed aggregates in the presence of PSS a strong electrostatic interaction, resulting in the development of a new emission peak at 650 nm at the expense of the monomer emission at 513 nm.
View Article and Find Full Text PDFDNA damage in all living cells is repaired with very high efficiency and nucleic acid binding proteins play crucial roles in repair associated processes. Translin is one such evolutionarily conserved nucleic acid interacting protein speculated to be a part of the DNA repair protein network. It is also involved in activation of RNA-induced silencing complex (RISC) along with Translin-associated factor X (TRAX) as the C3PO (component 3 promoter of RISC) complex.
View Article and Find Full Text PDFThe interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development.
View Article and Find Full Text PDFsp. PCC 6803 and elongatus PCC 7942 exhibit dissimilar tolerance to Cr(VI) with a tenfold difference in their EC value for Cr(VI). This contrasting tolerance was attributed to the difference in the ability to transport Cr(VI) and to detoxify ROS.
View Article and Find Full Text PDFChromosomal breaks occur in the genome of all living organisms upon exposure to ionizing radiation, xenobiotics and as intermediates during normal cell cycle progression. Most of the information on DNA repair process has emerged from bacteria, human, mice, and yeast while information on plant DNA repair genes and proteins is limited. Among other DNA repair proteins, MRE11 forms the core of the MRN (Mre11-Rad50-Nbs1) complex and is the first responder to double strand breaks (DSBs), promotes repair either by Non-Homologous End Joining (NHEJ) or Homologous Recombination (HR).
View Article and Find Full Text PDFTranslin, a highly conserved, DNA/RNA binding protein, is abundantly expressed in brain, testis and in certain malignancies. It was discovered initially in the quest to find proteins that bind to alternating polypurines-polypyrimidines repeats. It has been implicated to have a role in RNA metabolism (tRNA processing, RNAi, RNA transport, etc.
View Article and Find Full Text PDFInt J Biochem Cell Biol
October 2019
Translin is a multifunctional DNA/RNA binding protein involved in DNA repair and RNA metabolism. It has two basic regions and involvement of some residues in these regions in nucleic acid binding is established experimentally. Here we report the functional role of four residues of basic region II, Y85, R86, H88, R92 and one residue of C terminal region, K193 in nucleic acid binding using substitution mutant variants.
View Article and Find Full Text PDFDiverse abiotic stresses constitute one of the major factors which adversely affect the normal plant growth and development which results worldwide in decreased agricultural productivity. At present, utilization of new molecular tools to achieve improved stress tolerance and increased crop productivity is highly desirable. Abiotic stress in plants induces expression of a wide range of genes like transcription factors, defense related genes and so on, and the products of these genes are important in combating stress conditions.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2017
Translin is a DNA/RNA binding protein involved in DNA repair and RNA metabolism. Previously, we had shown that rice translin (221 amino acids) exhibits biochemical activities similar to that of the human translin protein. Here we report the role of the C-terminal random coil in rice translin function by analyzing truncation (after 215 residue, Tra - 215) and substitution mutant proteins (Ser216Ala, Lys217Ala, Gln218Ala, Glu219Ala).
View Article and Find Full Text PDFPlant Physiol Biochem
September 2016
DNA damage in living cells is repaired by two main pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Of all the genes promoting HR, Rad52 (Radiation sensitive 52) is an important gene which is found to be highly conserved across different species. It was believed that RAD52 is absent in plant systems until lately.
View Article and Find Full Text PDFRecombinases are known to play an important role in the homology search and strand exchange during meiosis as well as homologous recombination (HR)-mediated DNA repair specifically require Mg2+ ion for their activity. The Ca2+ has been shown to stimulate the strand exchange activity of hDmc1 and ScDmc1 by forming the extended filaments on DNA. Oryza sativa disrupted meiotic cDNA1A (OsDmc1A), a homologue of yeast and human Dmc1 from rice shows the hallmark functions of recombinase.
View Article and Find Full Text PDFFor the first time, a plant (rice) translin was characterized. The rice translin protein, which was octameric in native state, bound efficiently to single-stranded DNA and RNA. Translin, a DNA-/RNA-binding protein, is expressed in brain, testis and in certain malignancies.
View Article and Find Full Text PDFDNA homologous recombination is fundamental process by which two homologous DNA molecules exchange the genetic information for the generation of genetic diversity and maintain the genomic integrity. DNA recombinases, a special group of proteins bind to single stranded DNA (ssDNA) nonspecifically and search the double stranded DNA (dsDNA) molecule for a stretch of DNA that is homologous with the bound ssDNA. Recombinase A (RecA) has been well characterized at genetic, biochemical, as well as structural level from prokaryotes.
View Article and Find Full Text PDF