This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFThe aim of this study was to determine the sensitivity and specificity and inter-reader reliability of previously known "ghost sign" and "penumbra sign" on T1-weighted (T1W) imaging and "ghost sign" on apparent diffusion coefficient (ADC) map in osteomyelitis (OM) of the extremities. In this cross-sectional retrospective study, two fellowship-trained musculoskeletal readers blinded to final diagnosis of OM versus no OM were asked to report the penumbra sign and ghost sign on T1W images and ghost sign on ADC map, as well as diagnosis of OM. Cohen's kappa was used.
View Article and Find Full Text PDFAccurate diagnoses of peroneal pathologies remains a challenge due to limitations of conventional 2D (dimensional) imaging, which can impact long-term patient outcomes. This study evaluates MRI accuracy and inter-reader reliability of peroneal compartment pathology for 2D and 3D MRI. A consecutive series of patients who underwent peroneal compartment surgery with preoperative 1.
View Article and Find Full Text PDFPositron-emission tomography magnetic resonance imaging (PET/MRI) has emerged as a powerful hybrid molecular imaging technique in clinical practice, overcoming initial technical challenges to provide comprehensive anatomic and metabolic information. This advanced modality combines the superior soft tissue contrast of MRI with the metabolic insights of PET, offering advantages in hepatobiliary imaging, including improved detection of small liver metastases and reduced radiation exposure. The evolution of PET/MRI technology has been marked by significant advancements, such as the development of MRI-compatible PET detectors and sophisticated motion compensation techniques.
View Article and Find Full Text PDFThe global shift towards sustainable energy sources, necessitated by climate change concerns, has led to a critical review of biohydrogen production (BHP) processes and their potential as a solution to environmental challenges. This review evaluates the efficiency of various reactors used in BHP, focusing on operational parameters such as substrate type, pH, temperature, hydraulic retention time (HRT), and organic loading rate (OLR). The highest yield reported in batch, continuous, and membrane reactors was in the range of 29-40 L H/L per day at an OLR of 22-120 g/L per day, HRT of 2-3 h and acidic range of 4-6, with the temperature maintained at 37 °C.
View Article and Find Full Text PDFPhthalates, categorized as a main constituent of endocrine-disrupting chemicals (EDCs), are present in polymeric products. These substances can enter the environment through several pathways, including improper handling, which leads to their presence in toilet water, floor washings, surface runoff, and landfill leachate. This study focuses on the performance analysis of nanocomposite materials made of polymer (polypyrrole), quasi-metal (graphene oxide), and biochar (from palmyra seed) for the elimination of diethyl phthalates (DEP) from aqueous environments.
View Article and Find Full Text PDFPenile MRI is a vital yet underutilized diagnostic tool that provides detailed information crucial for managing various penile pathologies. Due to its infrequent use, many radiology trainees lack confidence in interpreting these exams. This article reviews the anatomy, key technical considerations, and interpretive pearls for penile trauma, Peyronie's disease, priapism, penile neoplasms, prosthesis evaluation, and a few miscellaneous conditions.
View Article and Find Full Text PDFT1-weighted (T1W) pulse sequences are an indispensable component of clinical protocols in abdominal MRI but usually require multiple breath holds (BHs) during the examination, which not all patients can sustain. Patient motion can affect the quality of T1W imaging so that key diagnostic information, such as intrinsic signal intensity and contrast enhancement image patterns, cannot be determined. Patient motion also has a negative impact on examination efficiency, as multiple acquisition attempts prolong the duration of the examination and often remain noncontributory.
View Article and Find Full Text PDFPAHs is the group of emerging micro-pollutants present in most environmental matrices that has the tendency to bioaccumulate and cause carcinogenic effects to human health. The present research involved the quantification and treatment of leachate produced from secured landfill, to eliminate the PAHS. Electro-Fenton process, a class of advanced oxidation process, is adopted to degrade the PAHs using titanium electrodes as both anode and cathode.
View Article and Find Full Text PDFDye wastewater possess immense toxicity with carcinogenic properties and they persist in environment owing to their stability and resistance to chemical and photochemical changes. The bio degradability of dye-contaminated wastewater is low due to its complex molecular structure. Nano-photocatalysts based on zinc oxide are reported as one of the effective metal oxides for dye remediation due to their photostability, enhanced UV and visible absorption capabilities in an affordable manner.
View Article and Find Full Text PDFWith the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process.
View Article and Find Full Text PDFChlorpyrifos (CPF) is a highly toxic phosphate-rich organic pesticide (OP), identified as an emerging contaminant and used extensively in agricultural production. CPF persistence in the environment and its potential health hazards has become increasingly concerning worldwide in recent years due to exponential rise in food demand. Biodegradation of chlorpyrifos by microbial cultures is a promising approach to reclaiming contaminated soil and aquatic environments.
View Article and Find Full Text PDFCovalent organic frameworks (COF) have emerged as a potential class of materials for a variety of applications in a wide number of sectors including power storage, environmental services, and biological applications due to their ordered and controllable porosity, large surface area, customizable structure, remarkable stability, and diverse electrical characteristics. COF have received a lot of attention in recent years in the field of environmental remediation, It also find its way to eliminate the emerging pollutant from the environment notably pesticide from polluted water. This review more concentrated on the application of COF in pesticide removal by modifying COF structure, COF synthesis and material properties.
View Article and Find Full Text PDFThe rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability.
View Article and Find Full Text PDFThe contamination of aqueous environment by phenol poses a major threat due to its hyper toxic effects and removal of phenol is challenging due to its hydrophilic properties. This research study examines the surface encapsulation of iron oxide (IO) with bio-derived carbon-based date palm (DP) to make date palm-iron oxide (DP-IO) nanocomposite to potentially remediate phenol in aqueous environment. Phenol removal percentage is predominantly influenced by environmental factors, namely pH, nano sorbent loading, temperature, agitation speed, and initial phenol concentration.
View Article and Find Full Text PDFRemediation of synthetic dyes found in aqueous environment poses a serious challenge for treatment due to their resistance to chemical and biological degradation. This research study investigated the application of Chitosan-ZnO-Seaweed bio nanocomposite in the remediation of congo red. The novel bionanocomposite was characterised by FTIR, SEM, TEM, EDS and XRD studies.
View Article and Find Full Text PDFDischarging untreated dye-containing wastewater gives rise to environmental pollution. The present study investigated the removal efficiency and adsorption mechanism of Acid Red 18 (AR18) utilizing hexadecyl-trimethyl ammonium chloride (HDTMA.Cl) modified Nano-pumice (HMNP), which is a novel adsorbent for AR18 removal.
View Article and Find Full Text PDFGlobal warming is the result of traditional fuel use and manufacturing, which release significant volumes of CO and other greenhouse gases from factories. Moreover, rising energy consumption, anticipated limitations of fossil fuels in the near future, and increased interest in renewable energies among scientists, currently increase research in biofuels. In contrast to biomass from urban waste materials or the land, algae have the potential to be a commercially successful aquatic energy crop, offering a greater energy potential.
View Article and Find Full Text PDFDue to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs.
View Article and Find Full Text PDFPolycyclic aromatic hydrocharbons (PAHs) are a class of highly toxic pollutants that are highly detrimental to the ecosystem. Landfill leechate emanated from municipal solid waste are reported to constitute significant PAHs. In the present investigation, three Fenton proceses, namely conventional Fenton, photo-fenton and electro-fenton methods have been employed to treat landfill leehcate for removing PAHs from a waste dumpig yard.
View Article and Find Full Text PDFThe considerable increase in world energy consumption owing to rising global population, intercontinental transportation and industrialization has posed numerous environmental concerns. Particularly, in order to meet the required electricity supply, thermal power plants for electricity generation are widely used in many countries. However, an annually excessive quantity of waste fly ash up to 1 billion tones was globally discarded from the combustion of various carbon-containing feedstocks in thermoelectricity plants.
View Article and Find Full Text PDF