J Exp Clin Cancer Res
October 2019
Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge.
View Article and Find Full Text PDFTargeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure.
View Article and Find Full Text PDFIn this study we examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. Here, we developed docetaxel-loaded vitamin E D-α-tocopheryl polyethylene glycol succinate (TPGS) micelles, of which the surface modified with cetuximab ligands for targeting epidermal growth factor receptors (EGFR) that are overexpressed in MDA-MB-231 breast cancer cells. The targeting micelles accumulated in the tumours immediately after the intravenous injection and retained for at least 24 h.
View Article and Find Full Text PDFThe aim of this work was to develop an advanced theranostic micelles of D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), which are conjugated with transferrin for targeted co-delivery of docetaxel (DTX) as a model drug and ultra bright gold clusters (AuNC) as a model imaging agent for simultaneous cancer imaging and therapy. The theranostic micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, surface chemistry, drug encapsulation efficiency, drug loading and cellular uptake efficiency. Transferrin receptors expressing MDA-MB-231-luc breast cancer cells and NIH-3T3 fibroblast cells (control cells without transferrin receptor expression) were employed as an in vitro model to access cytotoxicity of the formulations.
View Article and Find Full Text PDFA novel theranostic platform is made by utilizing a self-assembled DNA nanopyramid (DP) as scaffold for incorporation of both detection and therapeutic moieties to combat bacterial infection. Red-emissive glutathione-protected gold nanoclusters (GSH-Au NCs) were used for bacterial detection. Actinomycin D (AMD) that was intercalated on the DP scaffold was used as therapeutic agent.
View Article and Find Full Text PDFWe developed a system of Cetuximab-conjugated micelles of vitamin E TPGS for targeted delivery of docetaxel as a model anticancer drug for treatment of the triple negative breast cancer (TNBC), which shows no expression of either one of the hormone progesterone receptor (PR), estrogen receptor (ER) and epidermal growth factor receptor 2 (HER2) and is thus more difficult to be treated than the positive breast cancer. Such micelles are of desired particle size, drug loading, drug encapsulation efficiency and drug release profile. Their surface morphology, surface charge and surface chemistry were also characterized.
View Article and Find Full Text PDF