Publications by authors named "Rajalakshmi Santhakumar"

Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity.

View Article and Find Full Text PDF

The neonatal heart is a very useful tool for the study of biochemical pathways and properties of cardiomyocytes and as it has the potential to regenerate for a brief period of time from birth; it is also useful to study cardiac regeneration. However, as the heart matures, this proficiency for regeneration is reduced. This regenerative potential may be influenced by the microenvironment of the heart in the early stages of postnatal development and therefore, cell cultures derived at this stage may contain functional cardiomyocytes and progenitor cells.

View Article and Find Full Text PDF

In vitro culture of neonatal murine cardiomyocytes is vital for understanding the functions of the heart. Cardiomyocyte cultures are difficult to maintain because they do not proliferate after birth. The maintenance of primary cultures of viable and functional cardiomyocytes is considerably affected by the yield from initial steps of isolation procedures.

View Article and Find Full Text PDF

3-Dimensional conditions for the culture of Bone Marrow-derived Stromal/Stem Cells (BMSCs) can be generated with scaffolds of biological origin. Cardiogel, a cardiac fibroblast-derived Extracellular Matrix (ECM) has been previously shown to promote cardiomyogenic differentiation of BMSCs and provide protection against oxidative stress. To determine the matrix composition and identify significant proteins in cardiogel, we investigated the differences in the composition of this nanomatrix and a BMSC-derived ECM scaffold, termed as 'mesogel'.

View Article and Find Full Text PDF