Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches.
View Article and Find Full Text PDFCurrently, cervical cancer (CC) is the fourth recorded widespread cancer among women globally. There are still many cases of metastatic or recurring disease discovered, despite the incidence and fatality rates declining due to screening identification and innovative treatment approaches. Palliative chemotherapy continues to be the standard of care for patients who are not contenders for curative therapies like surgery and radiotherapy.
View Article and Find Full Text PDFThe multifaceted benefits of position it is not only as a promising agricultural commodity but also as a versatile resource with implications for health, biodiversity, and economic growth. has a rich history of traditional use for treating various ailments such as fever and diarrhea. Beyond its traditional uses, the plant's antioxidant properties suggest potential applications in combating oxidative stress-related conditions.
View Article and Find Full Text PDFProstate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment.
View Article and Find Full Text PDFScientists are constantly researching and launching potential chemotherapeutic agents as an irreplaceable weapon to fight the battle against cancer. Despite remarkable advancement over the past several decades to wipe out cancer through early diagnosis, proper prevention, and timely treatment, cancer is not ready to give up and leave the battleground. It continuously tries to find some other way to give a tough fight for its survival, either by escaping from the effect of chemotherapeutic drugs or utilising its own chemical messengers like cytokines to ensure resistance.
View Article and Find Full Text PDFA significant advancement in the field of epigenetic drug discovery has been evidenced in recent years. Epigenetic alterations are hereditary, nevertheless reversible variations to DNA or histone adaptations that regulate gene function individualistically of the fundamental sequence. The design and synthesis of various drugs targeting epigenetic regulators open a new door for epigenetic-targeted therapies to parade worthwhile therapeutic potential for haematological and solid malignancies.
View Article and Find Full Text PDFThe present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for histone deacetylase (HDAC) inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anticancer activity. We have selected a dataset from earlier research findings. The target and ligand molecules were procured from recognized databases and incorporated into pivotal findings such as molecular docking (XP glide), e-pharmacophore study and 3D QSAR model designing study (phase).
View Article and Find Full Text PDFHistone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies.
View Article and Find Full Text PDFMulti-targeted agents can interact with multiple targets sequentially, resulting in synergistic and more effective therapies for several complicated disorders, including cancer, even with relatively modest activity. Histone deacetylase (HDAC) inhibitors are low molecular weight small compounds that increase the acetylation of histone and nonhistone proteins, altering gene expression and thereby impacting angiogenesis, metastasis, and apoptosis, among other processes. The HDAC inhibitors affect multiple cellular pathways thus producing adverse issues, causing therapeutic resistance, and they have poor pharmacokinetic properties.
View Article and Find Full Text PDFBackground: The management of Alzheimer's disease is challenging due to its complexity. However, the currently approved and marketed treatments for this neurodegenerative disorder revolves around cholinesterase inhibitors, glutamate regulators, or the combination of these agents. Despite the prompt assurance of many new drugs, several agents were unsuccessful, especially in phase II or III trials, not meeting efficacy endpoints.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2023
Histone deacetylases (HDACs) are essential for maintaining homeostasis by catalyzing histone deacetylation. Aberrant expression of HDACs is associated with various human diseases. Although HDAC inhibitors are used as effective chemotherapeutic agents in clinical practice, their applications remain limited due to associated side effects induced by weak isoform selectivity.
View Article and Find Full Text PDFBackground: The severe acute respiratory syndrome coronavirus-2 is causing a disaster through coronavirus disease-19 (COVID-19), affecting the world population with a high mortality rate. Although numerous scientific efforts have been made, we do not have any specific drug for COVID-19 treatment.
Objective: Aim of the present study was to analyse the molecular interaction of nitrogen heterocyclic based drugs (hydroxychloroquine, remdesivir and lomefloxacin) with various SARSCoV- 2 proteins (RdRp, PLPro, Mpro and spike proteins) using a molecular docking approach.
A significant impediment to the treatment of solid and nonsolid cancers is the decline of drug efficacy and/or occurrence of adverse effects. In recent years, there has been increasing interest in oncolytic viruses (OVs) as a method to treat cancer because of their specificity for cancerous tissue and reduced likelihood of adverse effects. The results of clinical trials suggest that OVs have an acceptable safety profile and are effective in treating certain types of cancer, despite the limited number of these organisms.
View Article and Find Full Text PDFBeni Suef Univ J Basic Appl Sci
November 2021
Background: The World Health Organization (WHO) announced the COVID-19 occurrence as a global pandemic in March 2020. The treatment of SARS-CoV-2 patients is based on the experience gained from SARS-CoV and MERS-CoV infection during 2003. There is no clinically accepted therapeutic drug(s) accessible yet for the treatment of COVID-19.
View Article and Find Full Text PDFA significant number of the anti-inflammatory drugs currently in use are becoming obsolete. These are exceptionally hazardous for long-term use because of their possible unfavourable impacts. Subsequently, in the ebb-and-flow decade, analysts and researchers are engaged in developing new anti-inflammatory drugs, and many such agents are in the later phases of clinical trials.
View Article and Find Full Text PDFAngiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories.
View Article and Find Full Text PDFObjectives: The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for neuraminidase inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anti-influenza activity.
Materials And Methods: We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.
Results: 2D QSAR models had q: 0.
The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists.
View Article and Find Full Text PDFHDAC inhibitors (HDACi) play an essential role in various cellular processes, such as differentiation and transcriptional regulation of key genes and cytostatic factors, cell cycle arrest and apoptosis that facilitates the targeting of epigenome of eukaryotic cells. In the majority of cancers, only a handful of patients receive optimal benefit from chemotherapeutics. Additionally, there is emerging interest in the use of HDACi to modulate the effects of ionizing radiations.
View Article and Find Full Text PDFBackground: Overexpression of Histone deacetylase 1 (HDAC1) is responsible for carcinogenesis by promoting epigenetic silence of tumour suppressor genes. Thus, HDAC1 inhibitors have emerged as the potential therapeutic leads against multiple human cancers, as they can block the activity of particular HDACs, renovate the expression of several tumour suppressor genes and bring about cell differentiation, cell cycle arrest and apoptosis.
Methods: The present research work comprises atom-based 3D-QSAR, docking, molecular dynamic simulations and DFT (density functional theory) studies on a diverse series of hydroxamic acid derivatives as selective HDAC1 inhibitors.
Prodrugs, the inert derivatives of existing drugs have successfully contributed to the modification of their physicochemical properties. The improved antimicrobial potential due to enhanced lipophilicity of some of the synthesized prodrugs of antibacterial agents by various schemes has already been reported. In the current study, synthesis, characterization, and biological evaluation of some more lipid based prodrugs/compounds of ciprofloxacin and norfloxacin has been carried out.
View Article and Find Full Text PDFHistone deacetylase inhibitors (HDACi) have been demonstrated as an emerging class of anticancer drugs involved in regulation of gene expression and chromatin remodeling thus indicating valid targets for different types of cancer therapeutics. The pan-deacetylase inhibitor panobinostat (Farydac®, LBH589) is developed by Novartis Pharmaceuticals and a newly US FDA approved drug for the multiple myeloma. It is under clinical investigation for a range of hematological and solid tumors worldwide in both oral and intravenous formulations.
View Article and Find Full Text PDFBackground: Colorectal cancer is a devastating disease with a dismal prognosis which is heavily hampered by delayed diagnosis. Surgical resection, radiation therapy and chemotherapy are the curative options. Due to few therapeutic treatments available i.
View Article and Find Full Text PDF