Publications by authors named "Rajagopal Sekhar"

Severe and chronic infections, including pneumonia, sepsis, and tuberculosis (TB), induce long-lasting epigenetic changes that are associated with an increase in all-cause postinfectious morbidity and mortality. Oncology studies identified metabolic drivers of the epigenetic landscape, with the tricarboxylic acid (TCA) cycle acting as a central hub. It is unknown if the TCA cycle also regulates epigenetics, specifically DNA methylation, after infection-induced immune tolerance.

View Article and Find Full Text PDF

Cognitive decline frequently occurs with increasing age, but mechanisms contributing to age-associated cognitive decline (ACD) are not well understood and solutions are lacking. Understanding and reversing mechanisms contributing to ACD are important because increased age is identified as the single most important risk factor for dementia. We reported earlier that ACD in older humans is associated with glutathione (GSH) deficiency, oxidative stress (OxS), mitochondrial dysfunction, glucose dysmetabolism and inflammation, and that supplementing GlyNAC (glycine and N-acetylcysteine) improved these defects.

View Article and Find Full Text PDF

Background: Elevated oxidative stress (OxS), mitochondrial dysfunction, and hallmarks of aging are identified as key contributors to aging, but improving/reversing these defects in older adults (OA) is challenging. In prior studies, we identified that deficiency of the intracellular antioxidant glutathione (GSH) could play a role and reported that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improved GSH deficiency, OxS, mitochondrial fatty-acid oxidation (MFO), and insulin resistance (IR). To test whether GlyNAC supplementation in OA could improve GSH deficiency, OxS, mitochondrial dysfunction, IR, physical function, and aging hallmarks, we conducted a placebo-controlled randomized clinical trial.

View Article and Find Full Text PDF

Diabetes is the leading global cause for blindness, kidney failure and amputations. Preventing these complications requires optimal glycemic control, and it is imperative that diabetic patients understand the fundamental concepts of diabetes care. Although patients attend formal diabetes education classes, many do not comprehend basic concepts of diabetes, and are often noncompliant with diet, exercise and medications.

View Article and Find Full Text PDF

Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (GSH), the most abundant intracellular antioxidant, protects cells from OxS and is necessary for maintaining mitochondrial health, but GSH levels decline with aging.

View Article and Find Full Text PDF

Patients with type 2 diabetes (T2D) are known to have mitochondrial dysfunction and increased insulin resistance (IR), but the underlying mechanisms are not well understood. We reported previously that (a) adequacy of the antioxidant glutathione (GSH) is necessary for optimal mitochondrial fatty-acid oxidation (MFO); (b) supplementing the GSH precursors glycine and -acetylcysteine (GlyNAC) in mice corrected GSH deficiency, reversed impaired MFO, and lowered oxidative stress (OxS) and IR; and (c) supplementing GlyNAC in patients with T2D improved GSH synthesis and concentrations, and lowered OxS. However, the effect of GlyNAC on MFO, MGO (mitochondrial glucose oxidation), IR and plasma FFA (free-fatty acid) concentrations in humans with T2D remains unknown.

View Article and Find Full Text PDF

Humanity is battling a respiratory pandemic pneumonia named COVID-19 which has resulted in millions of hospitalizations and deaths. COVID-19 exacerbations occur in waves that continually challenge healthcare systems globally. Therefore, there is an urgent need to understand all mechanisms by which COVID-19 results in health deterioration to facilitate the development of protective strategies.

View Article and Find Full Text PDF

Cellular increases in oxidative stress (OxS) and decline in mitochondrial function are identified as key defects in aging, but underlying mechanisms are poorly understood and interventions are lacking. Defects linked to OxS and impaired mitochondrial fuel oxidation, such as inflammation, insulin resistance, endothelial dysfunction, and aging hallmarks, are present in older humans and are associated with declining strength and cognition, as well as the development of sarcopenic obesity. Investigations on the origins of elevated OxS and mitochondrial dysfunction in older humans led to the discovery that deficiencies of the antioxidant tripeptide glutathione (GSH) and its precursor amino acids glycine and cysteine may be contributory.

View Article and Find Full Text PDF

Background: Oxidative stress (OxS) and mitochondrial dysfunction are implicated as causative factors for aging. Older adults (OAs) have an increased prevalence of elevated OxS, impaired mitochondrial fuel-oxidation (MFO), elevated inflammation, endothelial dysfunction, insulin resistance, cognitive decline, muscle weakness, and sarcopenia, but contributing mechanisms are unknown, and interventions are limited/lacking. We previously reported that inducing deficiency of the antioxidant tripeptide glutathione (GSH) in young mice results in mitochondrial dysfunction, and that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improves naturally-occurring GSH deficiency, mitochondrial impairment, OxS, and insulin resistance.

View Article and Find Full Text PDF

Patients with HIV (PWH) develop geriatric comorbidities, including functional and cognitive decline at a younger age. However, contributing mechanisms are unclear and interventions are lacking. We hypothesized that deficiency of the antioxidant protein glutathione (GSH) contributes to multiple defects representing premature aging in PWH, and that these defects could be improved by supplementing the GSH precursors glycine and N-acetylcysteine (GlyNAC).

View Article and Find Full Text PDF

Metabolic, inflammatory, and functional changes occur in cardiovascular aging which may stem from oxidative stress and be remediable with antioxidants. Glutathione, an intracellular antioxidant, declines with aging, and supplementation with glutathione precursors, N-acetyl cysteine (NAC) and glycine (Gly), increases tissue glutathione. Thirty-month old mice were fed diets supplemented with NAC or NAC+Gly and, after 7 weeks, cardiac function and molecular studies were performed.

View Article and Find Full Text PDF

Patients infected with HIV have a high risk of developing dyslipidemia. Effective therapeutic strategies can be challenging due to an increase risk of drug interactions and other comorbidities. Understanding the underlying pathophysiology and the principles of pharmacological and non-pharmacological therapeutic interventions can be of value in the appropriate management of dyslipidemia in the HIV-infected patient.

View Article and Find Full Text PDF

Viral infections, such as HIV, have been linked to obesity, but mechanistic evidence that they cause adipose dysfunction in vivo is lacking. We investigated a pathogenic role for the HIV-1 accessory protein viral protein R (Vpr), which can coactivate the glucocorticoid receptor (GR) and co-repress peroxisome proliferator-activated receptor γ (PPARγ) in vitro, in HIV-associated adipose dysfunction. Vpr circulated in the blood of most HIV-infected patients tested, including those on antiretroviral therapy (ART) with undetectable viral load.

View Article and Find Full Text PDF

Background: HIV-infected patients are reported to have impaired oxidation of fatty acids despite increased availability, suggesting a mitochondrial defect. We investigated whether diminished levels of a key mitochondrial antioxidant, glutathione (GSH), was contributing to defective fatty acid oxidation in older HIV-infected patients, and if so, the metabolic mechanisms contributing to GSH deficiency in these patients.

Methods: In an open-label design, 8 older GSH-deficient HIV-infected males were studied before and after 14 days of oral supplementation with the GSH precursors cysteine and glycine.

View Article and Find Full Text PDF

Background: HIV patients on HAART are prone to metabolic abnormalities, including insulin resistance, lipodystrophy and diabetes. This study purports to investigate the relationship of ethnicity and CD4+ T cell count attained after stable highly-active antiretroviral treatment (HAART) with glucose metabolism in hyperrtriglyceridemic HIV patients without a history of diabetes.

Methods: Demographic, anthropometric, clinical, endocrinologic, energy expenditure and metabolic measures were obtained in 199 multiethnic, healthy but hypertriglyceridemic HIV-infected patients [46% Hispanic, 17% African-American, 37% Non-Hispanic White (NHW)] on stable HAART without a history of diabetes.

View Article and Find Full Text PDF

Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects.

View Article and Find Full Text PDF

Patients with HIV-associated dyslipidemic lipodystrophy (HADL) have characteristic lipid kinetic defects: accelerated lipolysis, blunted fat oxidation and increased hepatic fatty acid reesterification. HADL patients with lipoatrophy also have leptin deficiency. Small or non-randomized studies have suggested that leptin replacement improves glucose metabolism in HADL, with very limited data regarding its effects on the lipid kinetic abnormalities.

View Article and Find Full Text PDF

Background: Aging is associated with oxidative stress, but underlying mechanisms remain poorly understood.

Objective: We tested whether glutathione deficiency occurs because of diminished synthesis and contributes to oxidative stress in aging and whether stimulating glutathione synthesis with its precursors cysteine and glycine could alleviate oxidative stress.

Design: Eight elderly and 8 younger subjects received stable-isotope infusions of [2H(2)]glycine, after which red blood cell (RBC) glutathione synthesis and concentrations, plasma oxidative stress, and markers of oxidant damage (eg, F(2)-isoprostanes) were measured.

View Article and Find Full Text PDF

Context: HIV patients on antiretroviral therapy (ART) have a unique dyslipidemia [elevated triglycerides and non-high-density lipoprotein-cholesterol (HDL-C), low HDL-C] with insulin resistance (characterized by hypoadiponectinemia).

Objective: The aim was to test a targeted, comprehensive, additive approach to treating the dyslipidemia.

Design And Setting: We conducted a randomized, double-blind, placebo-controlled, 24-wk trial of lifestyle modification, fenofibrate, and niacin in multiethnic HIV clinics at an academic center.

View Article and Find Full Text PDF

Objective: Sustained hyperglycemia is associated with low cellular levels of the antioxidant glutathione (GSH), which leads to tissue damage attributed to oxidative stress. We tested the hypothesis that diminished GSH in adult patients with uncontrolled type 2 diabetes is attributed to decreased synthesis and measured the effect of dietary supplementation with its precursors cysteine and glycine on GSH synthesis rate and oxidative stress.

Research Design And Methods: We infused 12 diabetic patients and 12 nondiabetic control subjects with [²H₂]-glycine to measure GSH synthesis.

View Article and Find Full Text PDF

HIV-associated dyslipemic lipodystrophy (HADL) is a heterogeneous syndrome of fat redistribution, hypertriglyceridemia, and insulin resistance, associated with markedly accelerated rates of lipolysis, intraadipocyte and intrahepatic reesterification, and very low-density lipoprotein-triglyceride synthesis and release. The objective of the study was to determine if rosiglitazone can ameliorate these lipid kinetic defects in patients with HADL. Infusions of [(13)C(1)]palmitate and [(2)H(5)]glycerol were used to measure total and net lipolysis, adipocyte and hepatic reesterification, and plasma free fatty acid (FFA) oxidation in 9 men with HADL, before and after 3 months of treatment with rosiglitazone (8 mg/d).

View Article and Find Full Text PDF

Importance Of The Field: Patients infected with HIV are at high risk for dyslipidemia, insulin resistance and cardiovascular disease. Therapies to reverse these risks are complex, sometimes controversial, and not uniformly effective.

Areas Covered In This Review: Pathophysiology of the lipid abnormalities in HIV is discussed, including the causes of alterations in triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and insulin resistance.

View Article and Find Full Text PDF