Background: Three-dimensional (3D) food printing is a promising method for developing nutritious snack foods with complex and customized structures. In this study, to develop a pearl millet-based snack formulation, the printability of pearl millet flour (PMF) was assessed, without and with the addition of banana pulp (BP), a natural taste and flavor enhancer, at five different levels (PMF:BP of 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100).
Results: The water activity significantly decreased with increases in the proportion of BP; higher water activity was exhibited at 100:0 (0.
Food 3D printing is a computer-aided additive manufacturing technology that can transform foods into intricate customized forms. In the past decade, this field has phenomenally advanced and one pressing need is the development of strategies to support process optimization. Among different approaches, a range of modeling methods have been explored to simulate 3D printing processes.
View Article and Find Full Text PDFBackground: Three-dimensional (3D) printing is an emerging technology with numerous applications in the development of novel foods to meet personalized and special dietary needs. Using 3D printing, foods with modified textures and consistency can be prepared conveniently. In this work, an indigenous rice-black gram batter was fortified with pearl millet flour and 3D printed in the in-house developed extrusion-based food printer, Controlled Additive-manufacturing Robotic Kit (CARK™).
View Article and Find Full Text PDFA bolus-oriented artificial oral mastication system was developed to simulate the dynamics of food mastication in the human mouth. The system consists of a chewing unit, a bolus forming unit, and provisions for the dynamic incorporation of saliva during mastication. The system performance was validated with trials ( = 25) considering time-dependent changes in particle size, textural attributes and rheological behavior of the bolus.
View Article and Find Full Text PDFDisposing of the enormous amounts of food waste (FW) produced worldwide remains a great challenge, promoting worldwide research on the utilization of FW for the generation of value-added products. Gasification is a significant approach for decomposing and converting organic waste materials into biochar, bio-oil, and syngas, which could be adapted for energy (hydrogen (H) and heat) generation and environmental (removal of pollutants and improving the soil quality) applications. Employment of FW matrices for syngas production through gasification is one of the effective methods of energy recovery.
View Article and Find Full Text PDFAnthocyanin from red cabbage is an important biomolecule suitable for pH sensing due to its oxidoreduction potential that leads to a color change at various pH conditions. The pH-sensitive anthocyanin compound was extracted from red cabbage (1785 ± 235 mg/L) and encapsulated with gelatin as the wall material at the nanoscale (350 nm) through electrospraying. By using a simultaneous electrospraying and spinning process at 20 kV, nanoencapsulated anthocyanin was immobilized on ethyl cellulose (EC) nanofibers and formed as a nanocomposite membrane.
View Article and Find Full Text PDF