Classifying and modeling texture images, especially those with significant rotation, illumination, scale, and view-point variations, is a hot topic in the computer vision field. Inspired by local graph structure (LGS), local ternary patterns (LTP), and their variants, this paper proposes a novel image feature descriptor for texture and material classification, which we call Petersen Graph Multi-Orientation based Multi-Scale Ternary Pattern (PGMO-MSTP). PGMO-MSTP is a histogram representation that efficiently encodes the joint information within an image across feature and scale spaces, exploiting the concepts of both LTP-like and LGS-like descriptors, in order to overcome the shortcomings of these approaches.
View Article and Find Full Text PDFIn this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.
View Article and Find Full Text PDF