Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.
View Article and Find Full Text PDFIt is found that mixture of 1,2,3 benzo triazole (BTAH) with polyethoxylated sorbitan monooleate, a non-ionic surface-active agent (NIS) effectively improves the properties of the cast concrete as well as significantly reduces the chloride induced corrosion of steel reinforced bars, when added in freshly prepared paste of mortar mixture. The addition of this mixture in the cast mortars is noted to reduce the water absorption in comparison to the control mortars cast using identical materials and under similar cast conditions. Electrochemical impedance spectroscopy and polarization studies of the rebars embedded in mortars and exposed in cement slurry have been performed to study the role of synergistic mixture on kinetics and mechanism of corrosion of rebars.
View Article and Find Full Text PDFIn this study, the efficacy of the combined effect of borate and silicate alkali metal salts added to mortars for controlling the chloride-induced uniform and localized corrosion of embedded steel rebars is examined. The individually added salts in mortars are found to have insignificant effects in terms of reducing the uniform corrosion rate and localized damage. However, their combination (0.
View Article and Find Full Text PDFThis communication reports the effect of phosphorus (P) added in micro concentration range in steel on kinetics, mechanism and growth of passive film in contact of chloride contaminated concrete. Electrochemical impedance spectroscopy, direct-current polarization, mass loss and Raman spectroscopic techniques were used to arrive at the findings. The results showed that an intentional addition of P in steel (0.
View Article and Find Full Text PDFThis paper investigates the effect of high ambient temperatures on the chloride threshold value for reinforced concrete (RC) structures. Two commonly available carbon steel rebars were investigated under four different exposure temperatures (20 °C (68 °F), 35 °C (95 °F), 50 °C (122 °F), and 65 °C (149 °C)) using environmental chambers at a constant relative humidity of 80%. For each temperature, six different levels of added chloride ions (0.
View Article and Find Full Text PDFSteel structures significantly degrades owing to corrosion especially in coastal and industrial areas where significant amounts of aggressive ions are present. Therefore, anodic metals such as Al and Zn are used to protect steel. In the present study, we provide insights for the corrosion mechanism and kinetics of Al-Zn pseudo alloy coating deposited on mild steel plate via an arc thermal spraying process in 3.
View Article and Find Full Text PDFThis study was aimed to investigate the effect of steel, polypropylene (PP), and hybrid (steel + PP) fibers on high-temperature mechanical properties of reactive powder concrete (RPC). The mechanical properties considered are cubic compressive strength, axial or prismatic compressive strength, split-tensile strength, flexural strength, elastic modulus, peak strain, and stress-strain behavior. The strength recession due to high temperature was investigated at micro level by scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, mercury intrusion porosity, thermogravimetric, and differential scanning calorimetry analyses.
View Article and Find Full Text PDF