HAX-1, a multifunctional protein involved in cell proliferation, calcium homeostasis, and regulation of apoptosis, is a promising therapeutic target. It regulates apoptosis through multiple pathways, understanding of which is limited by the obscurity of its structural details and its intricate interaction with its cellular partners. Therefore, using computational modeling, biochemical, functional enzymology and spectroscopic tools, we predicted the structure of HAX-1 as well as delineated its interaction with one of it pro-apoptotic partner, HtrA2.
View Article and Find Full Text PDFPDZ-containing proteins comprise one of the most widely distributed protein families playing major role in localization and membrane receptor clustering. They are hence important regulators of signal transduction in cellular pathways. Although knowledge on these proteins has increased exponentially, the existing database 'PDZBase' is limited by presence of only 339 proteins as it dates back to 2004 when very little data was available.
View Article and Find Full Text PDFHtrA2, a complex trimeric pyramidal mitochondrial serine protease that regulates critical biological functions and diseases, including apoptosis and cancer, is a promising therapeutic target. It promotes apoptosis through multiple pathways, complex mechanisms of which are still elusive. The existing model of activation that emphasizes relative intramolecular movements between C-terminal PDZ and protease domains (PDZ-protease collapse in inactive and resting states) has not been able to unambiguously demonstrate dynamics of its actions.
View Article and Find Full Text PDFHtrA2, a trimeric proapoptotic serine protease is involved in several diseases including cancer and neurodegenerative disorders. Its unique ability to mediate apoptosis via multiple pathways makes it an important therapeutic target. In HtrA2, C-terminal PDZ domain upon substrate binding regulates its functions through coordinated conformational changes the mechanism of which is yet to be elucidated.
View Article and Find Full Text PDFHtrA (High temperature requirement protease A) proteins that are primarily involved in protein quality control belong to a family of serine proteases conserved from bacteria to humans. HtrAs are oligomeric proteins that share a common trimeric pyramidal architecture where each monomer comprises a serine protease domain and one or two PDZ domains. Although the overall structural integrity is well maintained and they exhibit similar mechanism of activation, subtle conformational changes and structural plasticity especially in the flexible loop regions and domain interfaces lead to differences in their active site conformation and hence in their specificity and functions.
View Article and Find Full Text PDF