Publications by authors named "Raja Paul"

We undertake a numerical study of the ordering kinetics in the two-dimensional (2D) active Ising model (AIM), a discrete flocking model with a conserved density field coupled to a nonconserved magnetization field. We find that for a quench into the liquid-gas coexistence region and in the ordered liquid region, the characteristic length scale of both the density and magnetization domains follows the Lifshitz-Cahn-Allen growth law, R(t)∼t^{1/2}, consistent with the growth law of passive systems with scalar order parameter and nonconserved dynamics. The system morphology is analyzed with the two-point correlation function and its Fourier transform, the structure factor, which conforms to the well-known Porod's law, a manifestation of the coarsening of compact domains with smooth boundaries.

View Article and Find Full Text PDF

Accurate positioning of the mitotic spindle within the rounded cell body is critical to physiological maintenance. Adherent mitotic cells encounter confinement from neighboring cells or the extracellular matrix (ECM), which can cause rotation of mitotic spindles and, consequently, titling of the metaphase plate (MP). To understand the positioning and orientation of mitotic spindles under confinement by fibers (ECM-confinement), we use flexible ECM-mimicking nanofibers that allow natural rounding of the cell body while confining it to differing levels.

View Article and Find Full Text PDF

Novel kinds of starch spectra were generated from a lesser-known plant, making this investigation unique. The recent trend of starch characterization shows the establishment of novel bioresources from nonconventional unexplored databases. The present endeavor was made to obtain the starch fingerprint of Ampelopteris prolifera (rhizome) belonging to seedless vascular plants.

View Article and Find Full Text PDF

Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors.

View Article and Find Full Text PDF

Research on bryophyte phytochemistry has revealed the presence of different phytochemicals like fatty acids, terpenoids, small phenolic molecules, etc. Small phenolic molecules, i.e.

View Article and Find Full Text PDF

Variation in the chromosome numbers can arise from the erroneous mitosis or fusion and fission of chromosomes. While the mitotic errors lead to an increase or decrease in the overall chromosomal substance in the daughter cells, fission and fusion keep this conserved. Variations in chromosome numbers are assumed to be a crucial driver of speciation.

View Article and Find Full Text PDF

Saccharomyces cerevisiae and Candida albicans, the two well-known human pathogens, can be found in all three morphologies, i.e., yeast, pseudohyphae, and true hyphae.

View Article and Find Full Text PDF

We study the active Potts model with either site occupancy restriction or on-site repulsion to explore jamming and kinetic arrest in a flocking model. The incorporation of such volume exclusion features leads to a surprisingly rich variety of self-organized spatial patterns. While bands and lanes of moving particles commonly occur without or under weak volume exclusion, strong volume exclusion along with low temperature, high activity, and large particle density facilitates jams due to motility-induced phase separation.

View Article and Find Full Text PDF

We observe multiple steplike jumps in a Dy-Fe-Ga-based ferrimagnetic alloy in its magnetic hysteresis curve at 2 K. The observed jumps are found to have a stochastic character with respect to their magnitude and the field position, and the jumps do not correlate with the duration of the field. The distribution of jump size follows a power law variation indicating the scale invariance nature of the jumps.

View Article and Find Full Text PDF

During mitosis, cells round up and utilize the interphase adhesion sites within the fibrous extracellular matrix (ECM) as guidance cues to orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we explore mitotic outcomes and error distribution for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo significant 3-dimensional (3D) displacement while being held by retraction fibers (RFs).

View Article and Find Full Text PDF

The dynamic process of mitotic spindle assembly depends on multitudes of inter-dependent interactions involving kinetochores (KTs), microtubules (MTs), spindle pole bodies (SPBs), and molecular motors. Before forming the mitotic spindle, multiple visible microtubule organizing centers (MTOCs) coalesce into a single focus to serve as an SPB in the pathogenic budding yeast, Cryptococcus neoformans. To explain this unusual phenomenon in the fungal kingdom, we propose a "search and capture" model, in which cytoplasmic MTs (cMTs) nucleated by MTOCs grow and capture each other to promote MTOC clustering.

View Article and Find Full Text PDF

According to the current perception, symptomatic, presymptomatic and asymptomatic infectious persons can infect the healthy population susceptible to the SARS-CoV-2. More importantly, various reports indicate that the number of asymptomatic cases can be several-fold higher than the reported symptomatic cases. In this article, we take the reported cases in India and various states within the country till September 1, as the specimen to understand the progression of the COVID-19.

View Article and Find Full Text PDF

We study the q-state active Potts model (APM) on a two-dimensional lattice in which self-propelled particles have q internal states corresponding to the q directions of motion. A local alignment rule inspired by the ferromagnetic q-state Potts model and self-propulsion via biased diffusion according to the internal particle states elicits collective motion at high densities and low noise. We formulate a coarse-grained hydrodynamic theory with which we compute the phase diagrams of the APM for q=4 and q=6 and analyze the flocking dynamics in the coexistence region, where the high-density (polar liquid) phase forms a fluctuating stripe of coherently moving particles on the background of the low-density (gas) phase.

View Article and Find Full Text PDF

We explore a standard epidemiological model, known as the SIRD model, to study the COVID-19 infection in India, and a few other countries around the world. We use (a) the stable cumulative infection of various countries and (b) the number of infection versus the tests carried out to evaluate the model. The time-dependent infection rate is set in the model to obtain the best fit with the available data.

View Article and Find Full Text PDF

To segregate chromosomes in mitosis, cells assemble a mitotic spindle, a molecular machine with centrosomes at two opposing cell poles and chromosomes at the equator. Microtubules and molecular motors connect the poles to kinetochores, specialized protein assemblies on the centromere regions of the chromosomes. Bipolarity of the spindle is crucial for the proper cell division, and two centrosomes in animal cells naturally become two spindle poles.

View Article and Find Full Text PDF

In this article, we present a Monte Carlo study of phase transition and coarsening dynamics in the nonconserved two-dimensional random-bond q-state clock model (RBCM) deriving from a pure clock model [Chatterjee et al., Phys. Rev.

View Article and Find Full Text PDF

Regulation of organelle size and shape is a poorly understood but fascinating subject. Several theoretical studies were reported on Golgi size regulation, but a combination of experimental and theoretical approaches is rare. In combination with the quantitative microscopy and a coarse-grained simulation model, we have developed a technique to gain insights into the functions of potential regulators of Golgi size in budding yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Upon contact with antigen-presenting cells, cytotoxic T lymphocytes (T cells) establish a highly organized contact zone denoted as the immunological synapse (IS). The formation of the IS implies relocation of the microtubule organizing center (MTOC) toward the contact zone, which necessitates a proper connection between the MTOC and the IS via dynamic microtubules (MTs). The efficiency of the MTs finding the IS within the relevant timescale is, however, still illusive.

View Article and Find Full Text PDF

During the interphase in mammalian cells, the position of the centrosome is actively maintained at a small but finite distance away from the nucleus. The perinuclear positioning of the centrosome is crucial for cellular trafficking and progression into mitosis. Although the literature suggests that the contributions of the microtubule-associated forces bring the centrosome to the center of the cell, the position of the centrosome was merely investigated in the absence of the nucleus.

View Article and Find Full Text PDF

The nuclear division takes place in the daughter cell in the basidiomycetous budding yeast Cryptococcus neoformans. Unclustered kinetochores gradually cluster and the nucleus moves to the daughter bud as cells enter mitosis. Here, we show that the evolutionarily conserved Aurora B kinase Ipl1 localizes to the nucleus upon the breakdown of the nuclear envelope during mitosis in C.

View Article and Find Full Text PDF

Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1-3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown.

View Article and Find Full Text PDF

High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts.

View Article and Find Full Text PDF

Mitotic spindle formation relies on the stochastic capture of microtubules at kinetochores. Kinetochore architecture affects the efficiency and fidelity of this process with large kinetochores expected to accelerate assembly at the expense of accuracy, and smaller kinetochores to suppress errors at the expense of efficiency. We demonstrate that on mitotic entry, kinetochores in cultured human cells form large crescents that subsequently compact into discrete structures on opposite sides of the centromere.

View Article and Find Full Text PDF

In the budding yeast, centromeres stay clustered near the spindle pole bodies (SPBs) through most of the cell cycle. This SPB-centromere proximity requires microtubules and functional kinetochores, which are protein complexes formed on the centromeres and capable of binding microtubules. The clustering is suggested by earlier studies to depend also on protein-protein interactions between SPB and kinetochore components.

View Article and Find Full Text PDF

Assembly of an integral Golgi complex is driven by microtubule (MT)-dependent transport. Conversely, the Golgi itself functions as an unconventional MT-organizing center (MTOC). This raises the question of whether Golgi assembly requires centrosomal MTs or can be self-organized, relying on its own MTOC activity.

View Article and Find Full Text PDF