BMS-914392 is a tricyclic pyranoquinoline BCS class 2 weak base that demonstrates high solubility in low pH environments. Initial clinical studies indicated that rapid release of high dose BMS-914392 led to transient adverse events associated with peak plasma concentrations. A modified release (MR) formulation strategy was proposed to suppress the peak blood concentration and maintain total exposure to overcome the adverse effects.
View Article and Find Full Text PDFPurpose: To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS.
Methods: Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting.
Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant.
View Article and Find Full Text PDFFor an amorphous drug-polymer solid dispersion, a distinctive single T(g) intermediate of the two T(g) values of the two components has been widely considered as an indication of the mixing uniformity, which is critical for the stability of the amorphous drug against crystallization. In this study, two batches of amorphous solid dispersions consisting of BMS-A, a poorly water-soluble drug, and PVP-VA, were made by a twin-screw hot-melt extruder using different processing conditions. Both batches displayed an identical distinctive single T(g) that is consistent with the prediction of Fox equation assuming homogeneous mixing of the two components.
View Article and Find Full Text PDFThe solubility of drugs in polyethylene glycol 400 (PEG 400) was estimated and rank ordered using a differential scanning calorimetry (DSC) method and the Fox Equation. Drug-polymer binary mixtures of six compounds (Ibuprofen, Indomethacin, Naproxen, and three proprietary compounds: PC-1 through PC-3) with PEG 400 were heat treated using a three-cycle DSC method to establish a correlation between equilibrium solubility and temperature. Thermal events such as heat of fusion, heat of recrystallization and glass transition temperature, T(g), were used to calculate the drug solubility at multiple higher temperatures through the Fox Equation.
View Article and Find Full Text PDF