Sci Total Environ
January 2014
Economically important mining operations have adverse environmental impacts: top soil, subsoil and overburden are relocated; resulting mine spoils constitute an unaesthetic landscape and biologically sterile or compromised habitat, and act as source of pollutants with respect to air dust, heavy metal contamination to soil and water bodies. Where such spoils are revegetated, however, they can act as a significant sink for atmospheric carbon dioxide (CO2) through combined plant succession and soil formation. Revegetation, drainage, reprofiling and proper long term management practices help recapture carbon, improve soil quality and restore the soil organic matter content.
View Article and Find Full Text PDFPlant available nitrogen, belowground (root) biomass, soil nitrogen (N) mineralization and microbial biomass N (MBN) were studied for 12 years at the interval of 2 years (0, 2, 4, 6, 8, 10 and 12 years) and mine dump stability at the intervals of 6 years (0, 6 and 12 years) after re-vegetation on coal mine spoil site. Plant available nitrogen in revegetated mine spoil ranged from 4.51 to 6.
View Article and Find Full Text PDFEnviron Monit Assess
November 2008
The objective of the present study was to evince the long-term changes after natural revegetation and experimental revegetation of the coal mine spoils with respect to total plant biomass, available plant nutrients, nitrogen transformation and microbial biomass N (MBN) in dry tropical environment of India. Total plant biomass (above- and below-ground), plant available nitrogen, soil nitrogen mineralization and microbial biomass N (MBN) were studied for 2 years in 5 and 10 years old naturally vegetated and revegetated coal mine spoils, and dry tropical forest ecosystem of India. In forest ecosystem, the above ground biomass values ranged from 3,520 to 3,630 kg ha(-1) and belowground from 6,280 to 6,560 kg ha(-1).
View Article and Find Full Text PDFEnviron Monit Assess
February 2007
A study was performed selecting one protected forest and an adjacent degraded forest ecosystem to quantify the impact of forest degradation on soil inorganic nitrogen, fine root production, nitrification, N-mineralization and microbial biomass N. There were marked seasonal variations of all the parameters in the upper 0-10 and lower 10-20 cm depths. The seasonal trend of net nitrification and net N-mineralization was reverse of that for inorganic nitrogen and microbial biomass N.
View Article and Find Full Text PDF