Publications by authors named "Raj Sah"

Emergent magnetic phenomena at interfaces represent a frontier in materials science, pivotal for advancing technologies in spintronics and magnetic storage. In this Letter, we utilize a suite of advanced X-ray spectroscopic and scattering techniques to investigate emergent interfacial ferromagnetism in oxide superlattices composed of antiferromagnetic CaMnO and paramagnetic CaRuO. Our findings demonstrate that ferromagnetism exhibits an asymmetric profile and may extend beyond the interfacial layer into multiple unit cells of CaMnO.

View Article and Find Full Text PDF

Bolstered by recent calculations of exact functional-driven errors (FEs) and density-driven errors (DEs) of semilocal density functionals in the water dimer binding energy [Kanungo, B. 2024, 15, 323-328], we investigate approximate FEs and DEs in neutral water clusters containing up to 20 monomers, charged water clusters, and alkali- and halide-water clusters. Our proxy for the exact density is rSCAN 50, a 50% global hybrid of exact exchange with rSCAN, which may be less correct than rSCAN for the compact water monomer but importantly more correct for long-range electron transfers in the noncompact water clusters.

View Article and Find Full Text PDF

Drug resistance to practically all antimalarial drugs in use necessitate the development of new chemotherapeutics against malaria. In this aspect, traditionally used plants with folklore reputation are the pillar for drug discovery. Cuscuta reflexa being traditionally used in the treatment of malaria in Odisha, India we aimed to experimentally validate its antimalarial potential.

View Article and Find Full Text PDF

The evolution of resistance to practically all antimalarial drugs poses a challenge to the current malaria elimination and eradication efforts. Given that the epigenome of Plasmodium falciparum governs several crucial parasite functions, pharmaceutical interventions with transmission-blocking potential that target epigenetic molecular markers and regulatory mechanisms are likely to encounter drug resistance. In the malaria parasite, histone deacetylases (HDACs) are essential epigenetic modulators that regulate cellular transcriptional rearrangements, notably the molecular mechanisms underlying parasite proliferation and differentiation.

View Article and Find Full Text PDF

Delocalization errors, such as charge-transfer and some self-interaction errors, plague computationally efficient and otherwise accurate density functional approximations (DFAs). Evaluating a semilocal DFA non-self-consistently on the Hartree-Fock (HF) density is often recommended as a computationally inexpensive remedy for delocalization errors. For sophisticated meta-GGAs like SCAN, this approach can achieve remarkable accuracy.

View Article and Find Full Text PDF

Introduction: Cancer bioenergetics is an essential hallmark of neoplastic transformation. Warburg postulated that mitochondrial OXPHOS is impaired in cancer cells, leading to aerobic glycolysis as the primary metabolic pathway. However, mitochondrial function is altered but not entirely compromised in most malignancies, and that mitochondrial uncoupling is known to increase the carcinogenic potential and modifies treatment response by altering metabolic reprogramming.

View Article and Find Full Text PDF

The emergence of resistance to conventional antimalarial treatments remains a major cause for concern. New drugs that target the distinct development stages of Plasmodium parasites are required to address this risk. Herein, water-soluble aggregation-induced emission active cyclometalated iridium(III) polypyridyl complexes (Ir1-Ir12) are developed for the elimination of malaria parasites.

View Article and Find Full Text PDF

Prevailing drug resistance in malaria imposes the major roadblock for the existing interventions necessitating the timely need to search for alternative therapies. Ants in Solenopsis , termed 'Fire ants', are well known for their aggressive behavior, which leads to the release of toxic venom. Notably, the tribal natives of the malaria-laden densely forested Bastar region, Chhattisgarh, India, use fire ant sting-based therapy to cure malaria-like high fever.

View Article and Find Full Text PDF
Article Synopsis
  • Post-translational modifications (PTMs), particularly phosphorylation and palmitoylation, play vital roles in regulating cellular processes related to invasion, but their potential interaction has not been studied before.
  • An integrated analysis identified a subset of proteins that undergo both modifications, highlighting myosin A tail interacting protein (MTIP) as a key player in the glideosome motor complex and indicating a significant crosstalk between phosphorylation and palmitoylation.
  • Blocking one type of PTM inhibited the other, disrupting MTIP's interaction with myosin A and demonstrating the crosstalk's impact on invasion, opening avenues for future drug discovery targeting these molecular processes in malaria.
View Article and Find Full Text PDF

LAMP diagnosis of malaria is simple and cost-effective with acceptable sensitivity and specificity as compared to standard diagnostic modules such as microscopy, RDTs and nested PCR, and thus its deployment for onsite screening of malaria in resource-limited regions is under consideration. However, the requirement of an electricity-operated dry bath and bulky read-out unit is still a major concern. In an effort to simplify this limitation, we have developed a portable LAMP device and fluorescence readout unit which can be used in the rapid point-of-care diagnosis of malaria.

View Article and Find Full Text PDF

The current anticancer therapies are limited by their lack of controlled spatiotemporal release at the target site of action. We report a novel drug delivery platform that provides on-demand, real-time, organelle-specific drug release and monitoring upon photoactivation. The system is comprised of a model anticancer drug doxorubicin, an alkyltriphenylphosphonium moiety to target mitochondria in cancer cells, and a hydroxycinnamate photoactivatable linker that is covalently attached to the drug and mitochondria-targeting moieties such that it can be phototriggered by either UV (one-photon) or NIR (two-photon) light to form a fluorescent coumarin product and facilitate the release of drug payload.

View Article and Find Full Text PDF

The sphingolipid pool is key regulator of vital cellular functions in Plasmodium falciparum a causative agent for deadly malaria. Erythrocytes, the host for asexual stage of Plasmodium, are major reservoir for Sphingosine-1-phosphate (S1P). Erythrocyte possesses Sphingosine kinase (SphK) that catalyzed its biosynthesis from sphingosine (Sph).

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P), a bioactive lipid mediator is involved in an array of biological processes and linked to pathological manifestations. Erythrocyte is known as the major reservoir for S1P as they lack S1P-degrading enzymes (S1P lyase and S1P phosphohydrolase) and harbor sphingosine kinase-1 (SphK-1) essential for sphingosine conversion to S1P. Reduced S1P concentration in serum was correlated with disease severity in patients with and infections.

View Article and Find Full Text PDF

epsilon toxin (Etx) is categorized as the third most lethal bioterrorism agent by the Centers for Disease Control and Prevention (CDC), with no therapeutic counter measures available for humans. Here, we have developed a high-affinity inhibitory compound by synthesizing and evaluating the structure activity relationship (SAR) of a library of diverse glycosides (numbered 1-12). SAR of glycoside-Etx heptamers revealed exceptionally strong H-bond interactions of glycoside-4 with a druggable pocket in the oligomerization and β-hairpin region of Etx.

View Article and Find Full Text PDF

Lipid-based palmitoylation is a post-translation modification (PTM) which acts as a biological rheostat in life cycle progression of a deadly human malaria parasite, . palmitoylation is catalyzed by 12 putative palmitoyl acyl-transferase enzymes containing the conserved DHHC-CRD (DHHC motif within a cysteine-rich domain) which can serve as a druggable target. However, the paucity of high-throughput assays has impeded the design of drugs targeting palmitoylation.

View Article and Find Full Text PDF