Access to accurate and precise monitoring systems for cardiac arrhythmia could contribute significantly to preventing damage and subsequent heart disorders. The present research concentrates on using photoplethysmography (PPG) and arterial blood pressure (ABP) with deep convolutional neural networks (CNN) for the classification and detection of fetal cardiac arrhythmia or premature ventricular contractions (PMVCs). The framework for the study entails (Icentia 11k) a public dataset of ECG signals consisting of different cardiac abnormalities.
View Article and Find Full Text PDFIndian J Dermatol Venereol Leprol
January 2022
This paper proposes a smart, automated heart health-monitoring (SAHM) device using a single photoplethysmography (PPG) sensor that can monitor cardiac health. The SAHM uses an Orthogonal Matching Pursuit (OMP)-based classifier along with low-rank motion artifact removal as a pre-processing stage. Major contributions of the proposed SAHM device over existing state-of-the-art technologies include these factors: (i) the detection algorithm works with robust features extracted from a single PPG sensor; (ii) the motion compensation algorithm for the PPG signal can make the device wearable; and (iii) the real-time analysis of PPG input and sharing through the Internet.
View Article and Find Full Text PDFIndian J Dermatol Venereol Leprol
November 2018