Publications by authors named "Raj Kumar Manna"

Organs and tissues must change shape in precise ways during embryonic development to execute their functions. Multiple mechanisms including biochemical signaling pathways and biophysical forces help drive these morphology changes, but it has been difficult to tease apart their contributions, especially from tissue-scale dynamic forces that are typically ignored. We use a combination of mathematical models and experiments to study a simple organ in the zebrafish embryo called Kupffer's vesicle.

View Article and Find Full Text PDF

Spontaneous phase separation, or demixing, is important in biological phenomena such as cell sorting. In particle-based models, an open question is whether differences in diffusivity can drive such demixing. While differential-diffusivity-induced phase separation occurs in mixtures with a packing fraction up to 0.

View Article and Find Full Text PDF

The intertwining of strands into 3D spirals is ubiquitous in biology, enabling functions from information storage to maintenance of cell structure and directed locomotion. In synthetic systems, entwined fibers can provide superior mechanical properties and act as artificial muscle or structural reinforcements. Unlike structures in nature, the entwinement of synthetic materials typically requires application of an external stimulus, such as mechanical actuation, light, or a magnetic field.

View Article and Find Full Text PDF

The inhibitor-promoter feedback loop is a vital component in regulatory pathways that controls functionality in living systems. In this loop, the production of chemical at one site promotes the production of chemical at another site, but inhibits the production of . In solution, differences in the volumes of the reactants and products of this reaction can generate buoyancy-driven fluid flows, which will deform neighboring soft material.

View Article and Find Full Text PDF

Catalytic reactions on flexible sheets generate fluid flows that transform the shape of the sheet, which in turn modifies the flow. These complex interactions make computer models vital for designing and harnessing these feedback loops to create soft active matter that autonomously performs self-sustained mechanical work.

View Article and Find Full Text PDF

In chemical solutions, the products of catalytic reactions can occupy different volumes compared to the reactants and thus give rise to local density variations in the fluid. These density variations generate solutal buoyancy forces, which are exerted on the fluid and thus "pump" the fluid to flow. Herein, we examine if the reaction-induced pumping accelerates the chemical reaction by transporting the reactants to the catalyst at a rate faster than passive diffusion.

View Article and Find Full Text PDF

The synchronization of self-oscillating systems is vital to various biological functions, from the coordinated contraction of heart muscle to the self-organization of slime molds. Through modeling, we design bioinspired materials systems that spontaneously form shape-changing self-oscillators, which communicate to synchronize both their temporal and spatial behavior. Here, catalytic reactions at the bottom of a fluid-filled chamber and on mobile, flexible sheets generate the energy to "pump" the surrounding fluid, which also transports the immersed sheets.

View Article and Find Full Text PDF

To fully realize the potential of microfluidic platforms as useful diagnostic tools, the devices must be sufficiently portable that they function at the point-of-care, as well as remote and resource-poor locations. Using both modeling and experiments, here we develop a standalone fluidic device that is driven by light and operates without the need for external electrical or mechanical pumps. The light initiates a photochemical reaction in the solution; the release of chemical energy from the reaction is transduced into the spontaneous motion of the surrounding fluid.

View Article and Find Full Text PDF

Using computational modeling, we design a facile method for sorting particles of different sizes in a fluid-filled microchamber. The microchamber is inclined at an angle with respect to the horizontal direction and contains suspended gold nanoparticles as well as the microparticles. With the application of ultraviolet light, the heat generated by illuminating the gold nanoparticles gives rise to thermal buoyancy effects, which drive the flow of the fluid in the chamber.

View Article and Find Full Text PDF

Polymeric fluids show a wealth of topological phenomena, from entanglement and reptation at microscales to orientational ordering and defect production at macroscales, which can be explained by statistical-mechanical theories. In the presence of activity, the latter must be augmented by forces that cause spontaneous chain motion and fluid flow. Here, using such augmented Langevin equations, we study active polymeric solutions and melts composed of chains of hydrodynamically interacting stresslets.

View Article and Find Full Text PDF

Active colloids are not constrained by equilibrium: ballistic propulsion, superdiffusive behavior, or enhanced diffusivities have been reported for active Janus particles. At high concentrations, interactions between active colloids give rise to complex emergent behavior. Their collective dynamics result in the formation of several hundred particle-strong flocks or swarms.

View Article and Find Full Text PDF

Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance.

View Article and Find Full Text PDF

The configurational dynamics of a polyelectrolyte (PE), subjected to a simple shear flow, is studied using Brownian dynamics (BD) and Dissipative Particle Dynamics (DPD) simulations of a bead-spring model with explicit counterions. We explore the effect of counterion condensation on the tumbling and extension of PEs by varying the shear rates for a range of values of the electrostatic coupling parameter A (which is defined as the ratio of the Bjerrum length to the size of the monomer). In all cases, the power spectrum of Rs(t) (which characterizes the projected length of the PE in the flow direction as a function of time) exhibits a power law decay at high frequencies, similar to that for a dumbbell in shear flow.

View Article and Find Full Text PDF