Publications by authors named "Raj Kishore Sharma"

Graphitic carbon nitride (g-CN)-based materials are attracting attention for their unique properties, such as low-cost, chemical stability, facile synthesis, adjustable electronic structure, and optical properties. These facilitate the use of g-CN to design better photocatalytic and sensing materials. Environmental pollution by hazardous gases and volatile organic compounds (VOCs) can be monitored and controlled using eco-friendly g-CN- photocatalysts.

View Article and Find Full Text PDF

Wound healing is an extremely intricate process involving various potential factors that can contribute towards delayed healing, one of them being bacterial colonization. The current research addresses this issue through the development of herbal antimicrobial films that can be stripped off easily, formed using an essential oil component thymol, biopolymer chitosan, and herbal plant Aloe vera. In comparison to the conventionally used nanoemulsions, thymol encapsulated in chitosan-Aloe vera (CA) film exhibited high encapsulation efficiency (95.

View Article and Find Full Text PDF

The aim of the present study was to design a unique bioelectrode for the quantitative analysis of a potential cancer biomarker, platelet-derived growth factor-BB (PDGF-BB), which can be used for the early detection of cancer. We report the fabrication of succinic acid-capped selenomolybdate polyoxometalate nanodots, POM (SA), decorated antimonene hybrid film on glassy carbon as a suitable bioelectrode. Antimonene nanosheets, synthesized by the chemical exfoliation of antimony provided a large surface area for the symmetric dispersal of POM (SA) nanodots, resulting in site-specific covalent immobilization of the aptamer, PDGF-BB.

View Article and Find Full Text PDF

Ophiocordyceps sinensis, a high-altitude medicinal mushroom, is widely revered in traditional medicine for its antiproliferative, antihypercholesterolemic, energy enhancement, etc. properties. These properties are attributed to the presence of steroids, terpenoids, polyphenolics, glycosides, and glycoproteins in it.

View Article and Find Full Text PDF

Hexestrol is a non-steroidal estrogen which causes carcinogenic effects in animals. It is therefore important to develop sensitive and selective test methods for its early detection. Herein, we report the development of an electrochemical sensor to detect hexestrol in ultralow concentrations.

View Article and Find Full Text PDF

In quest of a stable structure throughout redox reactions, an approach of B-site ordering (0D arrangement) of cations in double perovskites is adopted. Here, we report B-site cation ordering in double perovskite SrCoMoO (DP-SCM) that tends to a favorable rock salt structure (0D arrangement). The synergy of Co/Mo having good redox ability further facilitates high oxygen mobility.

View Article and Find Full Text PDF

The metallic phase (1T) of molybdenum sulfide is critical, pertaining to its exceptional interlayer structure and metastability, but forms up with low content. Herein, 1T-phase-prominent vanadium-incorporated MoS (MVS) nanoroses were synthesized through a hydrothermal process. A significant increase in 1T content (50 %) occurred with the addition of vanadium, enhancing the prompt diffusion of lithium ions by two orders.

View Article and Find Full Text PDF

Enriched with oxygen vacancies, Mo-doped strontium cobaltite (SrCo Mo O , SCM) is synthesized as an oxygen anion-intercalated charge-storage material through the sol-gel method. The supplemented oxygen vacancies, good electrical conductivity, and high ion diffusion coefficient bestow the SCM electrode with excellent specific capacitance (1223.34 F g ) and specific capacity (168.

View Article and Find Full Text PDF

Tuberculosis is one of the most dreadful diseases caused by Mycobacterium tuberculosis with more than 9 million individuals suffering from it in 2014. Traditional methods of detection are not efficient enough for its quick and reliable detection; therefore, it is imperative to develop methods of its detection in the early stages. Consequently, we report a highly sensitive and selective biosensor for detection of Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Various synthetic methods were employed on a single precursor to synthesize magnetic cobalt dithiocarbamate (Co(dtc-SB)) coordination polymer nanoparticles (MCP NPs) having different morphologies. When subjected to hydrothermal method, the precursor led to the formation of nanosheets (NSs) of MCP (100 x 80 nm), whereas the same precursor when set to slow diffusion precipitation, formed nanowires (NWs) with 30 nm diameter. Further, on micro-emulsion ultrasonication, uniform MCP nanocubes (NCs) -5 nm were obtained.

View Article and Find Full Text PDF

This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes.

View Article and Find Full Text PDF

A novel graphene nanoribbon (GNR)/cobalt coordination polymer (MCPs) composite (MCPs@GNR) is prepared by in situ reduction of graphene oxide nanoribbon (GONR) with simultaneous growth of MCPs nanoparticles on its surface. The morphology and structure are investigated by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy, X-ray diffraction and Raman spectroscopy. Results indicate that MCPs nanoparticles having dia.

View Article and Find Full Text PDF

High performance lacey reduced graphene oxide nanoribbons (LRGONR) were chemically synthesized. Holes created during the LRGONR synthesis not only enhanced the electrolytic accessibility but destacked all the graphene layers through protrusion at edge planes and corrugation in individual graphene. LRGONR in a supercapacitor cell showed ultrahigh performance in terms of specific capacitance and capacity retention.

View Article and Find Full Text PDF

Oxidative stress is a condition when the concentration of free radicals and reactive molecular species rise above certain level in living systems. This condition not only perturbs the normal physiology of the system but also has been implicated in many diseases in humans and other animals. Hydrogen peroxide (H2O2) is known to be involved in induction of oxidative stress and has also been linked to a variety of ailments such as inflammation, rheumatoid arthritis, diabetes, and cancer in humans.

View Article and Find Full Text PDF

Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator.

View Article and Find Full Text PDF

A simple strategy for the detection and estimation of ascorbic acid (AA), using lanthanum oxide-reduced graphene oxide nanocomposite (LO/RGO) on indium tin oxide (ITO) substrate, is reported. LO/RGO displays high catalytic activity toward the oxidation of AA, and the synergism between lanthanum oxide and reduced graphene oxide was attributed to the successful and efficient detection. Detection mechanism and sensing efficacy of LO/RGO nanocomposite are investigated by electrochemical techniques.

View Article and Find Full Text PDF

In this work, we synthesized graphene oxide from silk cocoon embarking its new dimension as a magnetic fluorophore when compared with its present technical status, which at best is for extracting silk as a biomaterial for tissue engineering applications. We produced graphene oxide by pyrolysing the silk cocoon in an inert atmosphere. The collected raw carbon is oxidized by nitric acid that readily produces multilayer graphene oxide with nano carbon particulates.

View Article and Find Full Text PDF

Cubic spinel Co3O4 nanoparticles with spherical (0D) and hexagonal platelet (2D) morphologies were synthesized using a simple solvothermal method by tuning the reaction time. XRD and HRTEM analyses revealed pure phase with growth of Co3O4 particles along [111] and [110] directions. UV-vis studies showed two clear optical absorption peaks corresponding to two optical band gaps in the range of 400-500 nm and 700-800 nm, respectively, related to the ligand to metal charge transfer events (O(2-) → Co(2+,3+)).

View Article and Find Full Text PDF

A simple, yet novel hydrothermal method has been developed to synthesize surfactant-free Cu2ZnSnS4 nanocrystal ink in water. The environmentally friendly, 2-4 nm ultrafine particles are stable in water for several weeks. Detailed X-ray diffraction (XRD) and high-resolution transmission electron microscopy revealed the formation of single-crystalline-kesterite-phase Cu2ZnSnS4.

View Article and Find Full Text PDF