A bench-scale plasma reactor was used to degrade poly- and perfluoroalkyl substances (PFAS) in landfill leachate samples obtained from three different locations. In the leachate samples before treatment, five long-chain, six short-chain perfluoroalkyl acids (PFAAs) and eight PFAA precursors were detected in a wide concentration range (~10 to 10 ng/L; total oxidizable precursors (TOP) ~10 ng/L). The concentration of perfluorooctane sulfonate (PFOS) plus perfluorooctanoic acid (PFOA) ranged between 2000 and 3000 ng/L.
View Article and Find Full Text PDF"High-concentration" and "low-concentration" bench-scale batch plasma reactors were used to effectively degrade per- and polyfluoroalkyl substances (PFAS) at a high concentration (∼100 mg/L) and a low concentration (<1 μg/L), respectively, in ion exchange (IX) regenerant still bottom (SB) solutions. In the SBs, numerous PFAS were detected with a wide concentration range (∼0.01 to 100 mg/L; total oxidizable precursors (TOP) ∼4000 to 10000 mg/L).
View Article and Find Full Text PDFA pilot-scale plasma reactor installed into an 8 × 20 ft mobile trailer was used to rapidly and effectively degrade poly- and perfluoroalkyl substances (PFAS) from liquid investigation-derived waste (IDW; development and purge water from monitoring wells) obtained from 13 different site investigations at Air Force installations. In the raw water, numerous PFAS were detected in a wide concentration range (∼10-10 ng/L; total oxidizable precursors (TOP) ∼10-10 ng/L, total fluorine by combustion ion chromatography ∼10 to 5 × 10 ng F/L). The concentration of total PFAS (12 perfluorocarboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs)) in the 13 samples ranged between 2.
View Article and Find Full Text PDFByproducts produced when treating perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in water using a plasma treatment process intentionally operated to treat these compounds slowly to allow for byproduct accumulation were quantified. Several linear chain perfluoroalkyl carboxylic acids (PFCAs) (C4 to C7) were identified as byproducts of both PFOA and PFOS treatment. PFOA, perfluorohexanesulfonate (PFHxS), and perfluorobutanesulfonate (PFBS) were also found to be byproducts from PFOS degradation.
View Article and Find Full Text PDFQuantitative estimations of fungal aerosols are important to understand their role in causing respiratory diseases to humans especially in the developing and highly populated countries. In this study we sampled and quantified the three most dominantly found allergenic airborne fungi, Aspergillus fumigatus, Cladosporium cladosporioides, and Alternaria alternata from ambient PM samples using the quantitative PCR (qPCR) technique in a southern tropical Indian region, for one full year. Highest concentrations of A.
View Article and Find Full Text PDFA multiple pin-plane corona discharge reactor was used to generate plasma for the degradation of 2,4 dichlorophenoxyacetic acid (2,4-D) from the aqueous solution. The 2,4-D of concentration 1 mg/L was completely removed within 6 min of plasma treatment. Almost complete mineralization was achieved after the treatment time of 14 min for a 2,4-D concentration of 10 mg/L.
View Article and Find Full Text PDFIn the present study, plasma generated by pulsed corona discharge was used for the degradation of diclofenac, carbamazepine and ciprofloxacin. Pollutants in aqueous solution were plasma treated under two categories: single and mixed pollutant condition. Mixed pollutant condition showed an antagonistic behaviour and thus the degradation time was higher for mixed condition compared to the single condition.
View Article and Find Full Text PDFMacrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs.
View Article and Find Full Text PDF