Background And Aims: Atherosclerotic plaques are characterized as being vulnerable to rupture based on a series of histologically defined features, including a lipid-rich necrotic core, spotty calcification and ulceration. Existing imaging modalities have limitations in their ability to distinguish between different materials and structural features. We examined whether X-ray spectral photon-counting computer tomography (SPCCT) images were able to distinguish key plaque features in a surgically excised specimen from the carotid artery with comparison to histological images.
View Article and Find Full Text PDFCommercially available fully spectroscopic pixelated cadmium telluride (CdTe) detector systems have been adopted lately for benchtop x-ray fluorescence (XRF) imaging/computed tomography (XFCT) of objects containing metal nanoprobes such as gold nanoparticles (GNPs). To date, however, some important characteristics of such detector systems under typical operating conditions of benchtop XRF/XFCT imaging systems are not well known. One important but poorly studied characteristic is the effect of detector bias-voltage on photon counting efficiency, energy resolution, and the resulting material detection limit.
View Article and Find Full Text PDFPurpose: To evaluate the quantitative imaging performance of a spectral photon-counting computed tomography (SPCCT) scanner for radiotherapy applications. An experimental comparison of the quantitative performance of a Siemens dual-energy CT (DECT) and a MARS SPCCT scanner is performed to estimate physical properties relevant to radiotherapy of human substitute materials and contrast agent solutions. In human substitute materials, the accuracy of quantities relevant to photon therapy, proton therapy, and Monte-Carlo simulations, such as the electron density, proton stopping power, and elemental composition is evaluated.
View Article and Find Full Text PDFThe energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment.
View Article and Find Full Text PDFAims: To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research.
Materials And Methods: A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) convert XCAT raw binary images into DICOM format; (6) analyse clinically acquired 4DCT images and real-time position management (RPM) respiratory signal.