This study aimed at carrying out a preformulation investigation of nanocochleates (NCs) and develop andrographolide-loaded nanocochleates. Preformulation study comprised of exploring the effect of trivalent and divalent ions on transition temperature (TT) of lipid (DMPG-Na), on particle size (PS), entrapment efficacy (EE), zeta potential (ZP) of NCs, and effect of NCs on change in lipid solubility post-NC formation. Further, the andrographolide-loaded nanocochleates made with CaCl (ANDNCs) were characterized for ZP, PS, EE, X-ray powder diffraction (PXRD), differential scanning calorimetry (DSC), transition electron microscopy (TEM), in vitro release studies, in vitro anticancer potential on the cell line of human breast cancer (MCF-7), in vivo oral pharmacokinetic studies, and tissue distribution in female Wistar rats.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
June 2019
The motive of study was to develop biotinylated chitosan (BI-CHI) decorated docetaxel (DTX) loaded nanocochleates (BI-CHI-DTX-NC) to achieve controlled drug release, improve bioavailability, targeted delivery and enhanced anticancer potency with the reduced systemic toxicity of DTX. The development involved the loading of DTX to nanocochleates (DTX-NC) through conversion of dimyristoylphosphatidylglycerol-sodium (DMPG-Na) and cholesterol bearing liposome on addition of calcium ions, followed by encapsulated DTX-NC with BI-CHI (BI-CHI-DTX- NC) and compared with DTX and DTX-NC. The release of DTX indicated strong pH dependence and implies strong hydrogen-bonding between nanocochleates and DTX.
View Article and Find Full Text PDF