Publications by authors named "Raiyan Zaman"

Circulating tumor cells (CTCs) are associated with tumor burden and treatment response and, as hallmarks of the initiation of tumor dissemination, can predict the likelihood of metastatic progression before widespread tumors can be detected by standard anatomic imaging. However, early diagnosis of recurrence through the detection of CTCs is limited by their low prevalence in blood and the limited sensitivity of existing technologies. To address these challenges, we investigated the use of ultrasound and targeted microbubbles (MBs) for early CTC detection.

View Article and Find Full Text PDF
Article Synopsis
  • Successful imaging of atherosclerosis is important for diagnosis and treatment, with near-infrared fluorescence (NIRF) imaging being a key method used alongside hybrid imaging systems.
  • The study evaluated two fluorescent tracers aimed at macrophages (TLR4-ZW800-1C and Feraheme-Alexa Fluor 750) in a mouse model, showing that both tracers had high uptake in the atherosclerotic artery compared to a control artery.
  • The favorable renal clearance of ZW800-1C and the FDA approval of Feraheme suggest these tracers are promising candidates for further research in larger animal models and clinical applications in NIRF imaging.
View Article and Find Full Text PDF

Carotid artery stenosis (CAS) is a major cause of stroke or transient ischemic attack (TIA, mini-stroke) in the United States. Carotid endarterectomy (CEA), a surgical procedure, is used to treat CAS. According to the American Heart Association, 1 out of 5 patients underwent CEA inappropriately, which was most commonly due to apparent overestimation of stenosis severity, and half had uncertain indicators.

View Article and Find Full Text PDF

Coronary artery disease (CAD) causes mortality and morbidity worldwide. We used near-infrared erythrocyte-derived transducers (NETs), a contrast agent, in combination with a photoacoustic imaging system to identify the locations of atherosclerotic lesions and occlusion due to myocardial-infarction (MI). NETs (≈90 nm diameter) were fabricated from hemoglobin-depleted mice erythrocyte-ghosts and doped with Indocyanine Green (ICG).

View Article and Find Full Text PDF

Purpose: X-ray CT plays a pivotal role in diagnostic imaging, radiotherapy, and its indispensable contribution to preclinical small animal imaging research. This study characterizes a distinctive energy spectrum of a novel 3-mercaptobenzoic-acid (3MBA)-protected-144-atoms gold-nanoparticles (3MBA-Au-144-NPs) after X-ray excitation and detects vulnerable atherosclerotic plaques non-invasively using this novel contrast agent in mice carotid arteries for the first time to the best of our knowledge.

Methods: We designed a four-chamber heart apex model using a 3D-printer and filled with four different concentrations of 3MBA-Au-144-NPs.

View Article and Find Full Text PDF

Thin-cap fibroatheroma (TCFA) are the unstable lesions in coronary artery disease that are prone to rupture, resulting in substantial morbidity and mortality worldwide. However, their small size and complex morphologic and biologic features make early detection and risk assessment difficult. We tested our newly developed catheter-based ircumferential-ntravascular-adioluminescence-hotoacoustic-maging (CIRPI) system in vivo to enable detection and characterization of vulnerable plaque structure and biology in rabbit abdominal aorta.

View Article and Find Full Text PDF

Atherosclerosis is a progressive inflammatory condition caused by an unstable lesion, called thin-cap fibro atheromata (TCFA) that underlies coronary artery disease (CAD)-one of the leading causes of death worldwide. Therefore, early clinical diagnosis and effective risk stratification is important for CAD management as well as preventing progression to catastrophic events. However, early detection could be difficult due to their small size, motion, obscuring F-FDG uptake by adjacent myocardium, and complex morphological/biological features.

View Article and Find Full Text PDF

Objectives: Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs.

View Article and Find Full Text PDF

Unlabelled: Atherosclerosis underlies coronary artery disease, the leading cause of death in the United States and worldwide. Detection of coronary plaque inflammation remains challenging. In this study, we developed a scintillating balloon-enabled fiber-optic radionuclide imaging (SBRI) system to improve the sensitivity and resolution of plaque imaging using (18)F-FDG, a marker of vascular inflammation, and tested it in a murine model.

View Article and Find Full Text PDF

Background: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1) developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2) validating the system on ex vivo murine plaques.

View Article and Find Full Text PDF

Background: The primary goal of this study was the fabrication, long-term stability, and measured release of a marker dye from a micro-patterned drug delivery device using (i) mechanical puncture and (ii) photodisruption with an ophthalmic Nd:YAG laser.

Materials And Methods: A drug delivery device was made from a transparent bio-compatible polymer. The device consisted of two 2.

View Article and Find Full Text PDF

Light scattering in the normally white sclera prevents diagnostic imaging or delivery of a focused laser beam to a target in the underlying choroid layer. In this study, we examine optical clearing of the sclera and changes in blood flow resulting from the application of glycerol to the sclera of rabbits. Recovery dynamics are monitored after the application of saline.

View Article and Find Full Text PDF

Background And Objective: Previous studies demonstrated a decrease in fluorescence intensity as tissue temperature increased. In vitro samples were increased from room temperature and in vivo canine liver from body temperature. This study investigated variations in fluorescence intensity with temperatures starting at 14°C and compared in vivo and in vitro results for consistency.

View Article and Find Full Text PDF

Background And Objective: The objective of this article is to quantify the effect of hyper-osmotic agent (glycerol) on blood velocity in hamster skin blood vessels measured with a dynamic imaging technique, laser speckle contrast imaging (LSCI).

Study Design/materials And Methods: In this study a dorsal skin-flap window was implanted on the hamster skin. The hyper-osmotic drug, that is, glycerol was delivered to the skin through the open dermal end of the window model.

View Article and Find Full Text PDF

This study demonstrates the use of diffuse optical spectroscopy (DOS) for the noninvasive measurement of gold nanoshell concentrations in tumors of live mice. We measured the diffuse optical spectra (500-800 nm) using an optical fiber probe placed in contact with the tissue surface. We performed studies on tissue phantoms illustrating an accurate measurement of gold-silica nanoshell concentration within 12.

View Article and Find Full Text PDF