Several gaps persist in haptic device development due to the multifaceted nature of the sense of touch. Existing gaps include challenges enhancing touch feedback fidelity, providing diverse haptic sensations, and ensuring wearability for delivering tactile stimuli to the fingertips. Here, we introduce the Bioinspired Adaptable Multiplanar Haptic system, offering mechanotactile/steady and vibrotactile pulse stimuli with adjustable intensity (up to 298.
View Article and Find Full Text PDFEvery year billions of dollars are spent on research and development activities in virtually every technological sector. Sadly, although many such activities have a wide potential of application, the results of this research are still a long way from commercialisation. However, companies, research organisations and academic institutes are now waking up to the fact that it has become increasingly necessary to exchange, transfer and license the technologies (including software) and knowledge they have developed in order to access new markets and revenue streams.
View Article and Find Full Text PDFVery little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway.
View Article and Find Full Text PDFUnlabelled: The use of the prone position for surgery presents potential obstacles to rapid tracking of patients during ambulatory anesthesia. We describe a prospective audit of 73 patients who placed themselves in the prone position; anesthesia was induced in this position and a laryngeal mask airway (LMA) was used to maintain the airway. Additional increments of propofol were given to one patient who had laryngospasm and to nine who required deepening of anesthesia before the LMA could be inserted.
View Article and Find Full Text PDFBackground: The present paper describes the development of a one-port technique for thoracoscopic sympathectomy.
Methods: A 7-mm thorascope with a working channel for diathermy was used.
Conclusion: A highly cosmetic, simple, safe, day-case procedure is achievable.
The adaptive response to hyperosmotic stress in yeast, termed the high osmolarity glycerol (HOG) response, is mediated by two independent upstream pathways that converge on the Pbs2 MAP kinase kinase (MAPKK), leading to the activation of the Hog1 MAP kinase. One branch is dependent on the Sho1 transmembrane protein, whose primary role was found to be the binding and translocation of the Pbs2 MAPKK to the plasma membrane, and specifically to sites of polarized growth. The yeast PAK homolog Ste20 is essential for the Sho1-dependent activation of the Hog1 MAP kinase in response to severe osmotic stress.
View Article and Find Full Text PDFThe Skn7 response regulator has previously been shown to play a role in the induction of stress-responsive genes in yeast, e.g., in the induction of the thioredoxin gene in response to hydrogen peroxide.
View Article and Find Full Text PDFThe Saccharomyces cerevisiae Sln1 protein is a 'two-component' regulator involved in osmotolerance. Two-component regulators are a family of signal-transduction molecules with histidine kinase activity common in prokaryotes and recently identified in eukaryotes. Phosphorylation of Sln1p inhibits the HOG1 MAP kinase osmosensing pathway via a phosphorelay mechanism including Ypd1p and the response regulator, Ssk1p.
View Article and Find Full Text PDFOxygen is an important environmental regulator for the transcription of several genes in Saccharomyces cerevisiae, but it is not yet clear how this yeast or other eukaryotes actually sense oxygen. To begin to address this we have examined the effects of oxygen concentration on the expression of several nuclear genes (CYC1, CYC7, COX4, COX5a, COX5b, COX6, COX7, COX8, and COX9) for proteins of the terminal portion of the respiratory chain. COX5b and CYC7 are hypoxic genes; the rest are aerobic genes.
View Article and Find Full Text PDFDeletion of the bacterial two-component response regulator homologue Skn7 results in sensitivity of yeast to oxidizing agents indicating that Skn7 is involved in the response to this type of stress. Here we demonstrate that following oxidative stress, Skn7 regulates the induction of two genes: TRX2, encoding thioredoxin, and a gene encoding thioredoxin reductase. TRX2 is already known to be induced by oxidative stress dependent on the Yap1 protein, an AP1-like transcription factor responsible for the induction of gene expression in response to various stresses.
View Article and Find Full Text PDFWe have studied the function and expression of the flavohemoglobin (YHb) in the yeast Saccharomyces cerevisiae. This protein is a member of a family of flavohemoproteins, which contain both heme and flavin binding domains and which are capable of transferring electrons from NADPH to heme iron. Normally, actively respiring yeast cells have very low levels of the flavohemoglobin.
View Article and Find Full Text PDFMol Gen Genet
January 1994
The cytochrome c gene (cycA) of the filamentous fungus Aspergillus nidulans has been isolated and sequenced. The gene is present in a single copy per haploid genome and encodes a polypeptide of 112 amino acid residues. The nucleotide sequence of the A.
View Article and Find Full Text PDFThe structural gene for 5-aminolevulinate (ALA) synthase has been cloned and sequenced from the filamentous fungus Aspergillus nidulans using an oligonucleotide probe based on a highly conserved-amino-acid sequence found in ALA synthase genes of a wide range of species. The cloned gene, hemA, has a 5' untranslated mRNA of 92 nucleotides (nt) and one intron (64 nt). The deduced protein sequence (648 amino acids) shows 64% identity to the yeast ALA synthase in the C-terminal region of 453 amino acids.
View Article and Find Full Text PDF