Publications by authors named "Raissa G Ludwig"

The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood.

View Article and Find Full Text PDF

Metformin is the most prescribed drug for DM2, but its site and mechanism of action are still not well established. Here, we investigated the effects of metformin on basolateral intestinal glucose uptake (BIGU), and its consequences on hepatic glucose production (HGP). In diabetic patients and mice, the primary site of metformin action was the gut, increasing BIGU, evaluated through PET-CT.

View Article and Find Full Text PDF

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited.

View Article and Find Full Text PDF

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage.

View Article and Find Full Text PDF

COVID-19 is prevalent in the elderly. Old individuals are more likely to develop pneumonia and respiratory failure due to alveolar damage, suggesting that lung senescence may increase the susceptibility to SARS-CoV-2 infection and replication. Considering that human coronavirus (HCoVs; SARS-CoV-2 and SARS-CoV) require host cellular factors for infection and replication, we analyzed Genotype-Tissue Expression (GTEx) data to test whether lung aging is associated with transcriptional changes in human protein-coding genes that potentially interact with these viruses.

View Article and Find Full Text PDF

miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease.

View Article and Find Full Text PDF

IMPACT, a highly conserved protein, is an inhibitor of the eIF2α kinase GCN2. In mammals, it is preferentially expressed in neurons. Knock-down of IMPACT expression in neuronal cells increases basal GCN2 activation and eIF2α phosphorylation and decreases translation initiation.

View Article and Find Full Text PDF

Obesity may be counteracted by increased energy expenditure. Circulating molecules act in the adipose tissue to influence brown and beige adipocyte function, differentiation, and thermogenic capacity, which in turn affects substrate utilization and impacts energy balance at the organismal level. These molecules have been envisioned as biomarkers and potential candidates for pharmacological interventions to treat obesity.

View Article and Find Full Text PDF

The sensory neurons in the olfactory epithelium (OSNs) are equipped with a large repertoire of olfactory receptors and the associated signal transduction machinery. In addition to the canonical OSNs, which express odorant receptors (ORs), the epithelium contains specialized subpopulations of sensory neurons that can detect specific information from environmental cues and relay it to relevant neuronal circuitries. Here we describe a subpopulation of mature OSNs in the main olfactory epithelium (MOE) which expresses CD36, a multifunctional receptor involved in a series of biological processes, including sensory perception of lipid ligands.

View Article and Find Full Text PDF