Leaf plastids harbor a plethora of biochemical reactions including photosynthesis, one of the most important metabolic pathways on Earth. Scientists are eager to unveil the physiological processes within the organelle but also their interconnection with the rest of the plant cell. An increasingly important feature of this venture is to use experimental data in the design of metabolic models.
View Article and Find Full Text PDFA micro-cantilever technique applied to individual leaf epidermis cells of intact Arabidopsis thaliana and Nicotiana tabacum synthesizing genetically encoded calcium indicators (R-GECO1 and GCaMP3) revealed that compressive forces induced local calcium peaks that preceded delayed, slowly moving calcium waves. Releasing the force evoked significantly faster calcium waves. Slow waves were also triggered by increased turgor and fast waves by turgor drops in pressure probe tests.
View Article and Find Full Text PDFPlants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b).
View Article and Find Full Text PDFPlant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms.
View Article and Find Full Text PDFBiological processes are highly dynamic, and during plant growth, development, and environmental interactions, they occur and influence each other on diverse spatiotemporal scales. Understanding plant physiology on an organismic scale requires analyzing biological processes from various perspectives, down to the cellular and molecular levels. Ideally, such analyses should be conducted on intact and living plant tissues.
View Article and Find Full Text PDFThe phytohormone abscisic acid (ABA) regulates various aspects of plant physiology, growth, and development to maintain a balanced plant water status. Cellular ABA levels are regulated through the combined activities of biosynthesis, catabolism, and transport proteins and depend on the developmental stage, the cell-type and on environmental conditions. Genetically encoded Förster (fluorescence) Resonance Energy Transfer (FRET)-based ABA-responsive biosensors enable the direct monitoring of ABA dynamics in intact plants.
View Article and Find Full Text PDFUpon pathogen recognition, a transient rise in cytoplasmic calcium levels is one of the earliest events in plants and a prerequisite for defense initiation and signal propagation from a local site to systemic plant tissues. However, it is unclear if calcium signaling differs in the context of priming: Do plants exposed to a first pathogen stimulus and have consequently established systemic acquired resistance (SAR) display altered calcium responses to a second pathogen stimulus? Several calcium indicator systems including aequorin, YC3.6 or R-GECO1 have been used to document local calcium responses to the bacterial flg22 peptide but systemic calcium imaging within a single plant remains a technical challenge.
View Article and Find Full Text PDFVapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2020
Phytohormones enable plants to regulate their development, growth and physiology according to the environmental requirements. Knowledge about the underlying signaling mechanisms, combined with the ability to pharmacologically or genetically manipulate phytohormone responses is steadily being incorporated into modern plant biology research and agriculture. This knowledge also enabled the development of genetically encoded phytohormone indicators that allow the tracking of spatiotemporal phytohormone dynamics and signaling processes in vivo.
View Article and Find Full Text PDFDuring drought, abscisic acid (ABA) induces closure of stomata via a signaling pathway that involves the calcium (Ca )-independent protein kinase OST1, as well as Ca -dependent protein kinases. However, the interconnection between OST1 and Ca signaling in ABA-induced stomatal closure has not been fully resolved. ABA-induced Ca signals were monitored in intact Arabidopsis leaves, which express the ratiometric Ca reporter R-GECO1-mTurquoise and the Ca -dependent activation of S-type anion channels was recorded with intracellular double-barreled microelectrodes.
View Article and Find Full Text PDFAbscisic acid (ABA) regulates growth and developmental processes in response to limiting water conditions. ABA functions through a core signaling pathway consisting of PYR1/PYL/RCAR ABA receptors, type 2C protein phosphatases (PP2Cs), and SnRK2-type protein kinases. Other signaling modules might converge with ABA signals through the modulation of core ABA signaling components.
View Article and Find Full Text PDFPlants close stomata when root water availability becomes limiting. Recent studies have demonstrated that soil-drying induces root-to-shoot sulfate transport via the xylem and that sulfate closes stomata. Here we provide evidence for a physiologically relevant signaling pathway that underlies sulfate-induced stomatal closure in Arabidopsis ().
View Article and Find Full Text PDFGuard cells integrate various hormone signals and environmental cues to balance plant gas exchange and transpiration. The wounding-associated hormone jasmonic acid (JA) and the drought hormone abscisic acid (ABA) both trigger stomatal closure. In contrast to ABA however, the molecular mechanisms of JA-induced stomatal closure have remained largely elusive.
View Article and Find Full Text PDFStomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO]. CO elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO/ABA interaction remain unclear.
View Article and Find Full Text PDFGenetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors.
View Article and Find Full Text PDFAbscisic acid is a key phytohormone produced in response to abiotic stress conditions and is an activator of abiotic stress resistance mechanisms and a regulator during diverse developmental stages in plants. This SnapShot explores how ABA signaling operates and coordinates resistance during stress responses and modulates plant development.
View Article and Find Full Text PDFCalcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots.
View Article and Find Full Text PDFThe phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction.
View Article and Find Full Text PDFCurr Opin Plant Biol
December 2015
Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture.
View Article and Find Full Text PDFThe exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution.
View Article and Find Full Text PDFPlant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes.
View Article and Find Full Text PDFA central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca(2+)-signaling.
View Article and Find Full Text PDF