Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool for biomedical applications, including drug delivery, imaging, and magnetic hyperthermia. However, their tendency to agglomerate limits their performance efficiency. To overcome this limitation, a coating can be applied during or after synthesis.
View Article and Find Full Text PDFMany known chemotherapeutic anticancer agents exhibit neutropenia as a dose-limiting side effect. In this paper we suggest a prodrug concept solving this problem for camptothecin (HO-cpt). The prodrug is programmed according to Boolean "AND" logic.
View Article and Find Full Text PDFThe amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib.
View Article and Find Full Text PDFPurpose: Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like . Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast.
View Article and Find Full Text PDFPandemics like SARS-Cov-2 very frequently have their origin in different animals and in particular herds of camels could be a source of zoonotic diseases. This study took advantage on a highly sensitive and adaptable method for the fast and reliable detection of viral antibodies in camels using low-cost equipment. Magnetic nanoparticles (MNP) have high variability in their functionalization with different peptides and proteins.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles (SPION) are being investigated for many purposes, e.g., for the amplification of ionizing radiation and for the targeted application of therapeutics.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. They are associated with alcohol and tobacco consumption, as well as infection with human papillomaviruses (HPV). Therapeutic options include radiochemotherapy, surgery or chemotherapy.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties.
View Article and Find Full Text PDFGram bacteria are very common in clinical medicine and responsible for a large number of infectious diseases. For example, Gram bacteria play a major role in causing bloodstream infections and sepsis. Therefore, the detection of Gram bacteria is of great importance for the diagnosis and treatment of infectious diseases.
View Article and Find Full Text PDFNanoformulations for delivering nucleotides into cells as vaccinations as well as treatment of various diseases have recently gained great attention. Applying such formulations for a local treatment strategy, e.g.
View Article and Find Full Text PDFLabel-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles.
View Article and Find Full Text PDFElevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones.
View Article and Find Full Text PDFRadiotherapy (RT) efficacy can be improved by using radiosensitizers, i.e., drugs enhancing the effect of ionizing radiation (IR).
View Article and Find Full Text PDFSepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E.
View Article and Find Full Text PDFHydroxyapatite- or calcium phosphate-coated iron oxide nanoparticles have a high potential for use in many biomedical applications. In this study, a co-precipitation method for the synthesis of hydroxyapatite-coated nanoparticles (SPION), was used. The produced nanoparticles have been characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, atomic emission spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFBackground: The limitations of optical microscopy to determine the cellular localization of label-free nanoparticles prevent a solid prediction of the cellular effect of particles intended for medical applications. To avoid the strong physicochemical changes associated with fluorescent labelling, which often result in differences in cellular uptake, efficiency and toxicity of particles, novel detection techniques are required.
Methods: In the present study, we determined the intracellular content of unlabeled SPIONs by analyzing refractive index (RI)-based images from holotomographic three-dimensional (3D) microscopy and side scatter data measured by flow cytometry.
Surface-functionalized gold-coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) may be a useful tool in various biomedical applications. To obtain Au-SPIONs, gold salt was precipitated onto citrate-stabilized SPIONs (Cit-SPIONs) using a simple, aqueous one-pot technique inspired by the Turkevich method of gold nanoparticle synthesis. By the further stabilization of the Au-SPION surface with additional citrate (Cit-Au-SPIONs), controllable and reproducible Z-averages enhanced long-term dispersion stability and moderate dispersion pH values were achieved.
View Article and Find Full Text PDFPurpose: Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: "hot" tumors are infiltrated with T lymphocytes, "cold" tumors are not infiltrated and "immune excluded" tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for "hot" tumors by triggering the immune response of T cells.
View Article and Find Full Text PDF