Publications by authors named "Rainer S"

Skeletal muscle (SM) is essential for movement, stability, and overall body function, and it readily adapts to changes in energy demand. Myogenesis is energy-intensive and involves complex molecular and cellular events. We recently demonstrated that the absence of lysosomal acid lipase (LAL) significantly impacts the SM phenotype, primarily by disrupting energy homeostasis and reducing ATP production.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver pathology worldwide, closely associated with obesity and metabolic disorders. Increasing evidence suggests that macrophages play a crucial role in the development of MASLD. Several human studies have shown an inverse correlation between circulating lysosomal acid lipase (LAL) activity and MASLD.

View Article and Find Full Text PDF

Background: Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs).

Methods: This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days.

View Article and Find Full Text PDF

Sperm competition results from postcopulatory continuation of male-male competition for paternity. The level of sperm competition is predicted to be highest in species with greater polyandry and weakest in monogamous pairs. Sperm competition levels can be indexed using traits that reflect male investment in fertilization, particularly relative testes mass (RTM).

View Article and Find Full Text PDF

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl) and platelet-specific Mgl-deficient (platMgl) mice.

View Article and Find Full Text PDF

Advanced maternal age and obesity are the main risk factors to develop gestational diabetes mellitus (GDM). Obesity is a consequence of the increased storage of triacylglycerol (TG). Cytosolic and lysosomal lipid hydrolases break down TG and cholesteryl esters (CE) to release fatty acids (FA), free cholesterol, and glycerol.

View Article and Find Full Text PDF

According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function.

View Article and Find Full Text PDF

Enterocytes of the small intestine (SI) play an important role in maintaining systemic lipid levels by regulating dietary lipid absorption and postprandial lipoprotein secretion. An excessive amount of dietary-derived triglycerides (TGs) taken up by the apical side of enterocytes or basolaterally internalized lipoprotein remnants can be transiently stored in cytosolic lipid droplets (cLDs). As mice lacking adipose TG lipase (ATGL) in the SI display massive accumulation of cLDs but also delayed cholesterol absorption, we hypothesized that SI-specific overexpression of ATGL (Atgl iTg) might have beneficial effects on lipid homeostasis in the gut and possibly throughout the body.

View Article and Find Full Text PDF

Lysosomal acid lipase (LAL) is the sole enzyme known to be responsible for the hydrolysis of cholesteryl esters and triglycerides at an acidic pH in lysosomes, resulting in the release of unesterified cholesterol and free fatty acids. However, the role of LAL in diet-induced adaptations is largely unexplored. In this study, we demonstrate that feeding a Western-type diet to Lal-deficient (LAL-KO) mice triggers metabolic reprogramming that modulates gut-liver cholesterol homeostasis.

View Article and Find Full Text PDF

Cholesterol and fatty acids are essential lipids that are critical for membrane biosynthesis and fetal organ development. Cholesteryl esters (CE) are degraded by hormone-sensitive lipase (HSL) in the cytosol and by lysosomal acid lipase (LAL) in the lysosome. Impaired LAL or HSL activity causes rare pathologies in humans, with HSL deficiency presenting less severe clinical manifestations.

View Article and Find Full Text PDF

Thioglycolate-elicited macrophages exhibit abundant conjugation of LC3 with PE (LC3-II). Among other autophagy-related (ATG) proteins, it is proposed that, like in yeast, both ATG5 and ATG7 are essential for LC3 conjugation. Using -deficient () and macrophages, we provide evidence that loss of ATG5 but not of ATG7 resulted in LC3-II depletion.

View Article and Find Full Text PDF

Background: Cardiac amyloidosis has a very poor prognosis, but it is the nature of the involved precursor protein that ultimately dictates treatment and survival.

Aim: Definitively characterise the amyloid subtype by mass spectrometry (MS) in an Australian cohort of patients with cardiac amyloidosis.

Methods: We report the clinical characteristics and survival of 47 cardiac amyloid patients across two Australian centres including 39 patients evaluated for definitive amyloid subtype utilising laser microdissection and tandem mass spectrometry.

View Article and Find Full Text PDF

Background And Aims: Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is the rate-limiting enzyme catalyzing the final step of triglyceride synthesis by esterifying a diglyceride with a fatty acid. We have previously shown that apolipoprotein E-knockout (ApoE) mice lacking Dgat1 have reduced intestinal cholesterol absorption and potentiated macrophage cholesterol efflux, and consequently, exhibit attenuated atherogenesis. However, hematopoietic Dgat1 deficiency lacked beneficial effects on atherosclerosis.

View Article and Find Full Text PDF

Sympathetic vasoconstriction is mediated by α-adrenergic receptors under resting conditions. During exercise, increased sympathetic nerve activity (SNA) is directed to inactive and active skeletal muscle; however, it is unclear what mechanism(s) are responsible for vasoconstriction during large muscle mass exercise in humans. The aim of this study was to determine the contribution of α-adrenergic receptors to sympathetic restraint of inactive skeletal muscle and active skeletal muscle during cycle exercise in healthy humans.

View Article and Find Full Text PDF

Rationale: Chronic exposure to hypoxia is associated with elevated sympathetic nervous activity and reduced vascular function in lowlanders, and Andean highlanders suffering from excessive erythrocytosis (EE); however, the mechanistic link between chronically elevated sympathetic nervous activity and hypoxia-induced vascular dysfunction has not been determined.

Objective: To determine the impact of heightened sympathetic nervous activity on resistance artery endothelial-dependent dilation (EDD), and endothelial-independent dilation, in lowlanders and Andean highlanders with and without EE.

Methods And Results: We tested healthy lowlanders (n=9) at sea level (344 m) and following 14 to 21 days at high altitude (4300 m), and permanent Andean highlanders with (n=6) and without (n=9) EE at high altitude.

View Article and Find Full Text PDF

As circulating lipid levels are balanced by the rate of lipoprotein release and clearance from the plasma, lipid absorption in the small intestine critically contributes to the maintenance of whole-body lipid homeostasis. Within enterocytes, excessive triglycerides are transiently stored as cytosolic lipid droplets (cLDs), and their mobilization sustains lipid supply during interprandial periods. Using mice lacking adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) exclusively in the intestine (intestine-specific double KO [iDKO]), we show that ATGL/CGI-58 are not involved in providing substrates for chylomicron synthesis.

View Article and Find Full Text PDF

Introduction: The value of contact force information for ablation of LA anterior line is unknown. In a prospective randomized clinical trial, we investigated if information on contact force during left atrial (LA) anterior line ablation reduces total radiofrequency time and results in higher rates of bidirectional line block in patients undergoing pulmonary vein isolation (PVI) plus substrate modification.

Methods: We included patients with indication for pulmonary vein isolation (PVI) and additional substrate modification.

View Article and Find Full Text PDF

Degradation of lysosomal lipids requires lysosomal acid lipase (LAL), the only intracellular lipase known to be active at acidic pH. We found LAL to be expressed in murine immune cells with highest mRNA expression in macrophages and neutrophils. Furthermore, we observed that loss of LAL in mice caused lipid accumulation in white blood cells in the peripheral circulation, which increased in response to an acute inflammatory stimulus.

View Article and Find Full Text PDF

Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization.

View Article and Find Full Text PDF

Background And Aims: Monoglyceride lipase (MGL) catalyzes the final step of lipolysis by degrading monoglyceride (MG) to glycerol and fatty acid. MGL also hydrolyzes and thereby deactivates 2-arachidonoyl glycerol (2-AG), the most abundant endocannabinoid in the mammalian system. 2-AG acts as full agonist on cannabinoid receptor type 1 (CB1R) and CB2R, which are mainly expressed in brain and immune cells, respectively.

View Article and Find Full Text PDF

During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase.

View Article and Find Full Text PDF

Background: Hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere protein genes, and left ventricular hypertrophy (LVH) develops as an adaptive response to sarcomere dysfunction. It remains unclear whether persistent expression of the mutant gene is required for LVH or whether early gene expression acts as an immutable inductive trigger.

Objectives: The aim of this study was to use a regulatable murine model of HCM to study the reversibility of pathological LVH.

View Article and Find Full Text PDF

Cellular TG stores are efficiently hydrolyzed by adipose TG lipase (ATGL). Its coactivator comparative gene identification-58 (CGI-58) strongly increases ATGL-mediated TG catabolism in cell culture experiments. To investigate the consequences of CGI-58 deficiency in murine macrophages, we generated mice with a targeted deletion of CGI-58 in myeloid cells (macCGI-58(-/-) mice).

View Article and Find Full Text PDF