Publications by authors named "Rainer Renkawitz"

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time.

View Article and Find Full Text PDF

The two paralogous zinc finger factors CTCF and CTCFL differ in expression such that CTCF is ubiquitously expressed, whereas CTCFL is found during spermatogenesis and in some cancer types in addition to other cell types. Both factors share the highly conserved DNA binding domain and are bound to DNA sequences with an identical consensus. In contrast, both factors differ substantially in the number of bound sites in the genome.

View Article and Find Full Text PDF

Background: Chromatin insulators shield promoters and chromatin domains from neighboring enhancers or chromatin regions with opposing activities. Insulator-binding proteins and their cofactors mediate the boundary function. In general, covalent modification of proteins by the small ubiquitin-like modifier (SUMO) is an important mechanism to control the interaction of proteins within complexes.

View Article and Find Full Text PDF

Centrosomal 190 kDa protein (CP190) is a promoter binding factor, mediates long-range interactions in the context of enhancer-promoter contacts and in chromosomal domain formation. All Drosophila insulator proteins bind CP190 suggesting a crucial role in insulator function. CP190 has major effects on chromatin, such as depletion of nucleosomes, high nucleosomal turnover and prevention of heterochromatin expansion.

View Article and Find Full Text PDF

Nuclear foci of chromatin binding factors are, in many cases, discussed as sites of long-range chromatin interaction in the three-dimensional nuclear space. Insulator binding proteins have been shown to aggregate into insulator bodies, which are large structures not involved in insulation; however, the more diffusely distributed insulator speckles have not been analysed in this respect. Furthermore, insulator binding proteins have been shown to drive binding sites for Polycomb group proteins into Polycomb bodies.

View Article and Find Full Text PDF

The genomic organization into active and inactive chromatin domains imposes specific requirements for having domain boundaries to prohibit interference between the opposing activities of neighbouring domains. These boundaries provide an insulator function by binding architectural proteins that mediate long-range interactions. Among these, CTCF plays a prominent role in establishing chromatin loops (between pairs of CTCF binding sites) through recruiting cohesin.

View Article and Find Full Text PDF

Spermatogenesis is accompanied by a remarkable reorganization of the chromatin in post-meiotic stages, characterized by a near genome-wide displacement of histones by protamines and a transient expression of transition proteins. In Drosophila, the transition-protein-like protein Tpl94D contains an HMG-box domain and is expressed during chromatin reorganization. Here, we searched for additional HMG-box-containing proteins with a similar expression pattern.

View Article and Find Full Text PDF

Insulators are multiprotein-DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained.

View Article and Find Full Text PDF

Insulators functionally separate active chromatin domains from inactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.

View Article and Find Full Text PDF

Chromatin insulators of higher eukaryotes functionally divide the genome into active and inactive domains. Furthermore, insulators regulate enhancer/promoter communication, which is evident from the Drosophila bithorax locus in which a multitude of regulatory elements control segment specific gene activity. Centrosomal protein 190 (CP190) is targeted to insulators by CTCF or other insulator DNA-binding factors.

View Article and Find Full Text PDF

Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells.

View Article and Find Full Text PDF

The heterogeneous collection of nucleosome remodelling and deacetylation (NuRD) complexes can be grouped into the MBD2- or MBD3-containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking.

View Article and Find Full Text PDF

Background: CTCF is a highly conserved and essential zinc finger protein expressed in virtually all cell types. In conjunction with cohesin, it organizes chromatin into loops, thereby regulating gene expression and epigenetic events. The function of CTCFL or BORIS, the testis-specific paralog of CTCF, is less clear.

View Article and Find Full Text PDF

The genome of higher eukaryotes exhibits a patchwork of inactive and active genes. The nuclear protein CCCTC-binding factor (CTCF) when bound to insulator sequences can prevent undesirable crosstalk between active and inactive genomic regions, and it can also shield particular genes from enhancer function, a role that has many applications in development. Exciting recent work has demonstrated roles for CTCF in, for example, embryonic, neuronal and haematopoietic development.

View Article and Find Full Text PDF

The zinc-finger protein CTCF was originally identified in the context of gene silencing and gene repression (Baniahmad et al. 1990; Lobanenkov et al. 1990).

View Article and Find Full Text PDF

Background: CCCTC binding factor (CTCF) is a highly conserved zinc finger protein, which is involved in chromatin organization, local histone modifications, and RNA polymerase II-mediated gene transcription. CTCF may act by binding tightly to DNA and recruiting other proteins to mediate its various functions in the nucleus. To further explore the role of this essential factor, we used a mass spectrometry-based approach to screen for novel CTCF-interacting partners.

View Article and Find Full Text PDF

The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site.

View Article and Find Full Text PDF

More than 10(9) base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.

View Article and Find Full Text PDF

For the compact Drosophila genome, several factors mediating insulator function, such as su(Hw) and dCTCF, have been identified. Recent analyses showed that both these insulator-binding factors are functionally dependent on the same cofactor, CP190. Here we analysed genome-wide binding of CP190 and dCTCF.

View Article and Find Full Text PDF

The 11-zinc finger protein CCCTC-binding factor (CTCF) is a highly conserved protein, involved in imprinting, long-range chromatin interactions and transcription. To investigate its function in vivo, we generated mice with a conditional Ctcf knockout allele. Consistent with a previous report, we find that ubiquitous ablation of the Ctcf gene results in early embryonic lethality.

View Article and Find Full Text PDF

Long-distance chromatin interaction has been proposed and demonstrated for enhancer elements separated from the gene by hundreds or thousands of base pairs. This paved the way for the detection of additional enhancer properties, such as the regulation of interaction, and the contacting of genes in trans on other chromosomes. The outspread arrangement of regulatory elements and transcription units requires insulators to prevent the functional interference of enhancer elements with inappropriate promoters.

View Article and Find Full Text PDF

Insulator sequences guide the function of distantly located enhancer elements to the appropriate target genes by blocking inappropriate interactions. In Drosophila, five different insulator binding proteins have been identified, Zw5, BEAF-32, GAGA factor, Su(Hw) and dCTCF. Only dCTCF has a known conserved counterpart in vertebrates.

View Article and Find Full Text PDF

Insulator or enhancer-blocking elements are proposed to play an important role in the regulation of transcription by preventing inappropriate enhancer/promoter interaction. The zinc-finger protein CTCF is well studied in vertebrates as an enhancer blocking factor, but Drosophila CTCF has only been characterised recently. To date only one endogenous binding location for CTCF has been identified in the Drosophila genome, the Fab-8 insulator in the Abdominal-B locus in the Bithorax complex (BX-C).

View Article and Find Full Text PDF

In higher organisms, the chromatin of sperm is organised in a highly condensed protamine-based structure. In pre-meiotic stages and shortly after meiosis, histones carry multiple modifications. Here, we focus on post-meiotic stages and show that also after meiosis, histone H3 shows a high overall methylation of K9 and K27 and we hypothesise that these modifications ensure maintenance of transcriptional silencing in the haploid genome.

View Article and Find Full Text PDF

Human p66alpha and p66beta are two potent transcriptional repressors that interact with the methyl-CpG-binding domain proteins MBD2 and MBD3. An analysis of the molecular mechanisms mediating repression resulted in the identification of two major repression domains in p66alpha and one in p66beta. Both p66alpha and p66beta are SUMO-modified in vivo: p66alpha at two sites (Lys-30 and Lys-487) and p66beta at one site (Lys-33).

View Article and Find Full Text PDF