Siglecs (sialic acid binding Ig-like lectins) are transmembrane receptors for sialylated glycoconjugates that modulate cellular interactions and signalling events in the haematopoietic, immune and nervous systems. Siglec-7 is a structural prototype for the recently described family of immune inhibitory CD33-related siglecs and is predominantly expressed on natural killer cells and monocytes, as well as subsets of CD8 T-cells. Siglec-specific inhibitors are desired for the detection of masked and unmasked forms of siglecs, to aid in dissection of signalling pathways and as tools to investigate siglecs as potential therapeutic targets.
View Article and Find Full Text PDFSialic acids as terminal residues of oligosaccharide chains play crucial roles in several cellular recognition events. Exploiting the selective affinity of Achatinin-H toward N-acetyl-9-O-acetylneuraminic acid-alpha2-6-GalNAc, we have demonstrated the presence of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on lymphoblasts of 70 children with acute lymphoblastic leukemia (ALL) and on leukemic cell lines by fluorimetric HPLC and flow cytometric analysis. This study aims to assess the structural aspect of the glycotope of Neu5,9Ac(2)-GPs(ALL) and to evaluate whether these disease-specific molecules can be used to monitor the clinical outcome of ALL.
View Article and Find Full Text PDFSialic acids are critical components of many glycoconjugates involved in biologically important ligand-receptor interactions. Quantitative and structural variations of sialic acid residues can profoundly affect specific cell-cell, pathogen-cell, or drug-cell interactions, but manipulation of sialic acids in mammalian cells has been technically limited. We describe the finding of a previously unrecognized and efficient uptake and incorporation of sialic acid analogues in mammalian cells.
View Article and Find Full Text PDF